P. Kelly
Orlando Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Kelly.
Journal of Applied Clinical Medical Physics | 2016
Jason Pukala; Perry Johnson; Amish P. Shah; K Langen; Frank J. Bova; R Staton; R. Manon; P. Kelly; Sanford L. Meeks
Benchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground‐truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground‐truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground‐truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phantoms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach. PACS number(s): 87.57.nj, 87.55.dk, 87.55.QrBenchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground-truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground-truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground-truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phantoms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach. PACS number(s): 87.57.nj, 87.55.dk, 87.55.Qr.
Journal of Applied Clinical Medical Physics | 2017
Jasmine A. Oliver; O Zeidan; Sanford L. Meeks; Amish P. Shah; Jason Pukala; P. Kelly; Naren Ramakrishna; Twyla R. Willoughby
Purpose The purpose of this study was to characterize the Mobius AIRO Mobile CT System for localization and image‐guided proton therapy. This is the first known application of the AIRO for proton therapy. Methods Five CT images of a Catphan®504 phantom were acquired on the AIRO Mobile CT System, Varian EDGE radiosurgery system cone beam CT (CBCT), Philips Brilliance Big Bore 16 slice CT simulator, and Siemens SOMATOM Definition AS 20 slice CT simulator. DoseLAB software v.6.6 was utilized for image quality analysis. Modulation transfer function, scaling discrepancy, geometric distortion, spatial resolution, overall uniformity, minimum uniformity, contrast, high CNR, and maximum HU deviation were acquired. Low CNR was acquired manually using the CTP515 module. Localization accuracy and CT Dose Index were measured and compared to reported values on each imaging device. For treatment delivery systems (Edge and Mevion), the localization accuracy of the 3D imaging systems were compared to 2D imaging systems on each system. Results The AIRO spatial resolution was 0.21 lp mm−1 compared with 0.40 lp mm−1 for the Philips CT Simulator, 0.37 lp mm−1 for the Edge CBCT, and 0.35 lp mm−1 for the Siemens CT Simulator. AIRO/Siemens and AIRO/Philips differences exceeded 100% for scaling discrepancy (191.2% and 145.8%). The AIRO exhibited higher dose (>27 mGy) than the Philips CT Simulator. Localization accuracy (based on the MIMI phantom) was 0.6° and 0.5 mm. Localization accuracy (based on Stereophan) demonstrated maximum AIRO‐kV/kV shift differences of 0.1 mm in the x‐direction, 0.1 mm in the y‐direction, and 0.2 mm in the z‐direction. Conclusions The localization accuracy of AIRO was determined to be within 0.6° and 0.5 mm despite its slightly lower image quality overall compared to other CT imaging systems at our institution. Based on our study, the Mobile AIRO CT system can be utilized accurately and reliably for image‐guided proton therapy.
Journal of Applied Clinical Medical Physics | 2018
Jasmine A. Oliver; Omar Zeidan; Sanford L. Meeks; Amish P. Shah; Jason Pukala; P. Kelly; Naren Ramakrishna; Twyla R. Willoughby
Abstract Purpose To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. Methods A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO‐specific CT‐stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. Results AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low‐density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric‐based SPR curves produced over‐ranged proton beams when large volumes of low‐density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curves low‐density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric‐based AIRO SPR curve and the “dose‐adjusted” SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single‐field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Conclusion Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system.
Journal of Applied Clinical Medical Physics | 2018
Ghazal Shafai‐Erfani; Twyla R. Willoughby; Naren Ramakrishna; Sanford L. Meeks; P. Kelly; Omar Zeidan
Abstract Purpose The purpose of this study was to investigate daily repositioning accuracy by analyzing inter‐ and intra‐fractional uncertainties associated with patients treated for intracranial or base of skull tumors in a compact proton therapy system with 6 degrees of freedom (DOF) robotic couch and a thermoplastic head mask indexed to a base of skull (BoS) frame. Materials and methods Daily orthogonal kV alignment images at setup position before and after daily treatments were analyzed for 33 patients. The system was composed of a new type of thermoplastic mask, a bite block, and carbon‐fiber BoS couch‐top insert specifically designed for proton therapy treatments. The correctional shifts in robotic treatment table with 6 DOF were evaluated and recorded based on over 1500 planar kV image pairs. Correctional shifts for patients with and without bite blocks were compared. Results Systematic and random errors were evaluated for all 6 DOF coordinates available for daily vector corrections. Uncertainties associated with geometrical errors and their sources, in addition to robustness analysis of various combinations of immobilization components were presented. Conclusions Analysis of 644 fractions including patients with and without a bite block shows that the BoS immobilization system is capable of maintaining intra‐fraction localization with submillimeter accuracy (in nearly 83%, 86%, 95% of cases along SI, LAT, and PA, respectively) in translational coordinates and subdegree precision (in 98.85%, 98.85%, and 96.4% of cases for roll, pitch, and yaw respectively) in rotational coordinates. The system overall fares better in intra‐fraction localization precision compared to previously reported particle therapy immobilization systems. The use of a mask‐attached type bite block has marginal impact on inter‐ or intra‐fraction uncertainties compared to no bite block.
Advances in radiation oncology | 2017
Jasmine A. Oliver; P. Kelly; Sanford L. Meeks; Twyla R. Willoughby; Amish P. Shah
Purpose To characterize the accuracy of noncoplanar image guided radiation therapy with the Varian Edge radiosurgery system for intracranial stereotactic radiosurgery (SRS) treatments by assessing the accuracy of kV/kV orthogonal pair registration with Optical Surface Monitoring System (OSMS) monitoring relative to cone beam computed tomography (CT). Methods and materials A Computerized Imaging Reference System head phantom and Encompass SRS Immobilization System were used to determine collision-free space for orthogonal image pairs (kV/kV) for couch rotations (CRs) of 45°, 30°, 15°, 345°, 330°, and 315°. Couch-induced shifts were measured using kV/kV orthogonal image pairs, OSMS, and cone beam CT. The kV/kV image pairs and OSMS localization accuracy was also assessed with respect to cone beam CT. Results Mean orthogonal image pair differences for 315°, 330°, 345°, 15°, 30°, and 45° CRs were ≤±0.60 mm and ±0.37°. OSMS localization accuracy was ≤±0.25 mm and ±0.20°. Correspondingly, kV/kV localization accuracy was ≤±0.30 mm and ±0.5°. Shift differences for various image pairs at all CRs were ≤±1.10 mm and ±0.7°. Cone beam CT deviation was 0.10 mm and 0.00° without patient motion or CR. Conclusion Based on our study, CR-induced shifts with the Varian Edge radiosurgery system will not produce noticeable dosimetric effects for SRS treatments. Thus, replacing cone beam CT with orthogonal kV/kV pairs coupled with OSMS at the treatment couch angle could reduce the number of cone beam CT scans that are acquired during a standard SRS treatment while providing an accurate and safe treatment with negligible dosimetric effects on the treatment plan.
Medical Physics | 2014
Jason Pukala; K Langen; Francis J. Bova; R Staton; R. Manon; P. Kelly; Sanford L. Meeks
PURPOSEnThe dosimetric uncertainties of deformable image registration (DIR) dose accumulation are not well understood. A clinically relevant method to estimate the dosimetric error of dose accumulation for head and neck (H&N) cancer patients is presented.nnnMETHODSnTen virtual H&N phantoms with known deformations were registered with a commercial DIR algorithm to determine the spatial errors that might be observed when performing DIR. The spatial error distributions obtained from the phantoms were then applied to 10 clinical H&N patients to simulate the potential errors that could occur. These errors were simulated by selecting ROI-specific error vectors at random from the phantom error distributions and adding them to the deformation vector fields (DVFs) of the patient registrations. This method of error simulation was evaluated for its ability to accurately represent real DVF errors. Finally, dose was deformed using the DVFs of the patient registrations without any added errors (nonperturbed DVFs) and compared to the dose deformed using the simulated error DVFs.nnnRESULTSnThe mean error introduced by the error simulation method was less than 1% for all evaluated DVH endpoints. For the patient cases, the following ranges were observed for the median simulated DIR dosimetric errors: brainstem D2%: 0% to 2%, cord D2%: 0% to 0.5%, mandible D2%: 0% to 0.5%, left parotid Dmean: 0.5% to 4.2%, right parotid Dmean: 0.2% to 1.3%. Maximum dosimetric errors were: brainstem D2%: 6.5%, cord D2%: 1.3%, mandible D2%: 1.1%, left parotid Dmean: 13%, right parotid Dmean: 35%.nnnCONCLUSIONSnA method for simulating DIR errors for dose accumulation in clinical cases was presented and evaluated. The sample DIR algorithm assessed with this method showed that large dosimetric errors are possible when dose accumulation is performed and that DIR should be used with caution. This work was partially supported by a research grant from Accuray Inc.
Practical radiation oncology | 2018
Twyla R. Willoughby; Sanford L. Meeks; P. Kelly; T. Dvorak; Keith E. Muller; Thomas M. Dana; Frank J. Bova
International Journal of Radiation Oncology Biology Physics | 2018
G. Glober; T.W. Holmes; B. Chauhan; A.P. Shah; T. Dvorak; Justin Rineer; P. Kelly
International Journal of Radiation Oncology Biology Physics | 2017
J.A. Oliver; O Zeidan; Sanford L. Meeks; A.P. Shah; Jason Pukala; P. Kelly; N.R. Ramakrishna; Twyla R. Willoughby
International Journal of Radiation Oncology Biology Physics | 2017
P. Kelly; B. Chauhan; T.W. Holmes; Sanford L. Meeks; Justin Rineer; T. Dvorak; K.M. Harris; D.J. Buchholz