Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. M. Lubin is active.

Publication


Featured researches published by P. M. Lubin.


The Astrophysical Journal | 1998

The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections

Michael G. Hauser; Richard G. Arendt; T. Kelsall; E. Dwek; N. Odegard; J. L. Weiland; H. T. Freudenreich; William T. Reach; R. F. Silverberg; S. H. Moseley; Y. C. Pei; P. M. Lubin; John C. Mather; Richard A. Shafer; George F. Smoot; Rainer Weiss; D. T. Wilkinson; E. L. Wright

The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 μm. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 μm (νIν < 64 nW m-2 sr-1, 95% confidence level) and at 240 μm (νIν < 28 nW m-2 sr-1, 95% confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 μm data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 μm. No plausible solar system or Galactic source of the observed 140 and 240 μm residuals can be identified, leading to the conclusion that the CIB has been detected at levels of νIν = 25 ± 7 and 14 ± 3 nW m-2 sr-1 at 140 and 240 μm, respectively. The integrated energy from 140 to 240 μm, 10.3 nW m-2 sr-1, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.


The Astrophysical Journal | 1995

Far-infrared spectral observations of the galaxy by COBE

William T. Reach; E. Dwek; Dale J. Fixsen; Tilak Hewagama; John C. Mather; Richard A. Shafer; A. J. Banday; C. L. Bennett; E. S. Cheng; Robert Eugene Eplee; D. Leisawi tz; P. M. Lubin; S. M. Read; L. P. Rosen; F.G.D. Shuman; George F. Smoot; T.J. Sodroski; E. L. Wright

We derive Galactic continuum spectra from 5-96 cm(-1) fromCOBE/FIRAS observations. The spectra are dominated by warm dust emission,which may be fitted with a single temperature in the range 16-21 K (fornu(2) emissivity) along each line of sight. Dust heated by the attenuatedradiation field in molecular clouds gives rise tointermediate-temperature (10-14 K) emission in the inner Galaxy only. Awidespread, very cold component (4-7 K) with optical depth that isspatially correlated with the warm component is also detected. The coldcomponent is unlikely to be due to very cold dust shielded from starlightbecause it is present at high latitude. We consider hypotheses that thecold component is due to enhanced submillimeter emissivity of the dustthat gives rise to the warm component, or that it may be due to verysmall, large, or fractal particles. Lack of substantial power above theemission from warm dust places strong constraints on the amount of coldgas in the Galaxy. The microwave sky brightness due to interstellar dustis dominated by the cold component, and its angular variation could limitour ability to discern primordial fluctuations in the cosmic microwavebackground radiation.


The Astrophysical Journal | 1994

Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations

C. L. Bennett; E. Kaita; John C. Mather; E. S. Cheng; K. M. Górski; D. T. Wilkinson; E. L. Wright; P. D. Jackson; George F. Smoot; Ron Weiss; P. M. Lubin; G. Hinshaw; K. Loewenstein; A. Kogut; C. Lineweaver; P. Keegstra; S. S. Meyer; A. J. Banday

The first two years of COBE DMR observations of the CMB anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy of the detected CMB temperature fluctuations. The two-year 53 GHz data are characterized by RMS temperature fluctuations of DT=44+/-7 uK at 7 degrees and DT=30.5+/-2.7 uK at 10 degrees angular resolution. The 53X90 GHz cross-correlation amplitude at zero lag is C(0)^{1/2}=36+/-5 uK (68%CL) for the unsmoothed 7 degree DMR data. A likelihood analysis of the cross correlation function, including the quadrupole anisotropy, gives a most likely quadrupole-normalized amplitude Q_{rms-PS}=12.4^{+5.2}_{-3.3} uK (68% CL) and a spectral index n=1.59^{+0.49}_{-0.55} for a power law model of initial density fluctuations, P(k)~k^n. With n fixed to 1.0 the most likely amplitude is 17.4 +/-1.5 uK (68% CL). Excluding the quadrupole anisotropy we find Q_{rms-PS}= 16.0^{+7.5}_{-5.2} uK (68% CL), n=1.21^{+0.60}_{-0.55}, and, with n fixed to 1.0 the most likely amplitude is 18.2+/-1.6 uK (68% CL). Monte Carlo simulations indicate that these derived estimates of n may be biased by ~+0.3 (with the observed low value of the quadrupole included in the analysis) and {}~+0.1 (with the quadrupole excluded). Thus the most likely bias-corrected estimate of n is between 1.1 and 1.3. Our best estimate of the dipole from the two-year DMR data is 3.363+/-0.024 mK towards Galactic coordinates (l,b)= (264.4+/-0.2 degrees, +48.1+/-0.4 degrees), and our best estimate of the RMS quadrupole amplitude in our sky is 6+/-3 uK.The first two years of COBE DMR observations of the CMB anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy of the detected CMB temperature fluctuations. The two-year 53 GHz data are characterized by RMS temperature fluctuations of DT=44+/-7 uK at 7 degrees and DT=30.5+/-2.7 uK at 10 degrees angular resolution. The 53X90 GHz cross-correlation amplitude at zero lag is C(0)^{1/2}=36+/-5 uK (68%CL) for the unsmoothed 7 degree DMR data. A likelihood analysis of the cross correlation function, including the quadrupole anisotropy, gives a most likely quadrupole-normalized amplitude Q_{rms-PS}=12.4^{+5.2}_{-3.3} uK (68% CL) and a spectral index n=1.59^{+0.49}_{-0.55} for a power law model of initial density fluctuations, P(k)~k^n. With n fixed to 1.0 the most likely amplitude is 17.4 +/-1.5 uK (68% CL). Excluding the quadrupole anisotropy we find Q_{rms-PS}= 16.0^{+7.5}_{-5.2} uK (68% CL), n=1.21^{+0.60}_{-0.55}, and, with n fixed to 1.0 the most likely amplitude is 18.2+/-1.6 uK (68% CL). Monte Carlo simulations indicate that these derived estimates of n may be biased by ~+0.3 (with the observed low value of the quadrupole included in the analysis) and {}~+0.1 (with the quadrupole excluded). Thus the most likely bias-corrected estimate of n is between 1.1 and 1.3. Our best estimate of the dipole from the two-year DMR data is 3.363+/-0.024 mK towards Galactic coordinates (l,b)= (264.4+/-0.2 degrees, +48.1+/-0.4 degrees), and our best estimate of the RMS quadrupole amplitude in our sky is 6+/-3 uK.


The Astrophysical Journal | 2011

ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz

Dale J. Fixsen; A. Kogut; S. Levin; M. Limon; P. M. Lubin; P. Mirel; M. D. Seiffert; Jack Singal; Edward J. Wollack; Thyrso Villela; Carlos Alexandre Wuensche

The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 ± 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 ± 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 ± 2. 1( K) (ν/ν0) −2.599±0.036 from 22 MHz to 10 GHz (ν0 = 310 MHz) in addition to a CMB temperature of 2.725 ± 0.001 K.The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the CMB temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an extragalactic rise of 50 ± 7 mK at 3.3 GHz in addition to a CMB temperature of 2.730 ± .004 K. Combining the ARCADE 2 data with data from the literature shows a background power law spectrum of T = 1.26 ± 0.09 [K] (�/�0) −2.60±0.04 from 22 MHz to 10 GHz (�0 = 1 GHz) in addition to a CMB temperature of 2.725 ± .001 K. Subject headings: cosmology: Cosmic Microwave Background — cosmology: Observations


The Astrophysical Journal | 2011

INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT

M. Seiffert; Dale J. Fixsen; A. Kogut; Steven M. Levin; M. Limon; P. M. Lubin; P. Mirel; Jack Singal; Thyrso Villela; Edward J. Wollack; Carlos Alexandre Wuensche

We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies, to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 2σ upper limits to CMB spectral distortions of μ< 6 × 10 −4 and |Yff| < 1 × 10 −4 . We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitude 18.4 ± 2.1 K at 0.31 GHz and a spectral index of −2.57 ± 0.05.


The Astrophysical Journal | 2011

ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION

A. Kogut; Dale J. Fixsen; S. Levin; M. Limon; P. M. Lubin; P. Mirel; M. Seiffert; Jack Singal; Thyrso Villela; Edward J. Wollack; Carlos Alexandre Wuensche

We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free–free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index βsynch =− 2.5 ± 0.1, with free–free emission contributing 0.10 ± 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc |b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of Cii emission. Both methods are consistent with a single power law over the frequency range 22 MHz to 10 GHz, with total Galactic emission toward the north polar cap TGal = 10.12 ± 0.90 K and spectral index β =− 2.55 ± 0.03 at reference frequency 0.31 GHz. Emission associated with the plane-parallel structure accounts for only 30% of the observed high-latitude sky temperature, with the residual in either a Galactic halo or an isotropic extragalactic background. The well-calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust and is consistent with spinning dust contributing 0.4 ± 0.1 of the Galactic plane emission at 23 GHz.


The Astrophysical Journal | 1983

Linear and circular polarization of the cosmic background radiation

P. M. Lubin; P. Melese; George F. Smoot

We have new data which consist of continued measurements of the linear polarization of the cosmic background radiation as well as the firsts measurement of the circular polarizaiton. Eleven declinations have been surveyed for linear polarization and one declination for circular polarization, all at 9 mm wavelength. We find no evidence for either a significant linear or circular component with statistical errors on the linear component of 20-60 ..mu..K for various models. For linear polarization, a 95% confidence level limit of 0.1 mK (3 x 10/sup -5/) for an axisymmetric anisotropic model is achieved, while for spherical harmonics through third order, a corresponding limit of 0.2 mK is achieved. For a declination of 37/sup 0/, a limit of 12 mK is placed on the time-varying component and 20 mKL on the DC component of the circular polarization at the 95% confidence level. At 37/sup 0/ declination the sensitivity per beam patch (7/sup 0/) is 0.2 mK.


The Astrophysical Journal | 1981

Polarization of the cosmic background radiation

P. M. Lubin; George F. Smoot

We discuss the technique and results of a measurement of the linear polarization of the Cosmic Background Radiation. Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. 38{sup o}N) and the southern hemisphere (Lima Lat. 12{sup o}s) over 11 declinations from -37{sup o} to +63{sup o} show the radiation to be essentially unpolarized over all areas surveyed. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. A fit of all data to the anisotropic axisymmetric model of Rees (1968) yields a 95% confidence level limit of 0.15 mK for the magnitude of the polarized component. Constraints on various cosmological models are discussed in light of these limits.


The Astrophysical Journal | 1994

Comments on the statistical analysis of excess variance in the COBE differential microwave radiometer maps

E. L. Wright; George F. Smoot; A. Kogut; G. Hinshaw; L. Tenorio; C. Lineweaver; C. L. Bennett; P. M. Lubin

Cosmic anisotrophy produces an excess variance sq sigma(sub sky) in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigma(sub sky)(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)(exp 0.5). The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)(exp 0.5) to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigma(sub sky)(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)(exp 0.5) = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).


The Astrophysical Journal | 2004

THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND AT 10 GHZ

Dale J. Fixsen; A. Kogut; Steven M. Levin; M. Limon; P. M. Lubin; P. Mirel; M. D. Seiffert; Edward J. Wollack

We report the results of an effort to measure the low-frequency portion of the spectrum of the cosmic microwave background (CMB) radiation, using a balloon-borne instrument called the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE). These measurements are to search for deviations from a thermal spectrum that are expected to exist in the CMB as a result of various processes in the early universe. The radiometric temperature was measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no emissive windows. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the antenna temperature of the sky. A linear model is used to compare the radiometer output to a set of thermometers on the instrument. The unmodeled residuals are less than 50 mK peak to peak with a weighted rms of 6 mK. Small corrections are made for the residual emission from the flight train, atmosphere, and foreground Galactic emission. The measured radiometric temperature of the CMB is 2.721 ± 0.010 K at 10 GHz and 2.694 ± 0.032 K at 30 GHz.We report the results of an effort to measure the low frequency portion of the spectrum of the Cosmic Microwave Background Radiation (CMB), using a balloon-borne instrument called ARCADE (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission). These measurements are to search for deviations from a thermal spectrum that are expected to exist in the CMB due to various processes in the early universe. The radiometric temperature was measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no emissive windows. An external blackbody calibrator provides an in situ reference. A linear model is used to compare the radiometer output to a set of thermometers on the instrument. The unmodeled residuals are less than 50 mK peak-to-peak with a weighted RMS of 6 mK. Small corrections are made for the residual emission from the flight train, atmosphere, and foreground Galactic emission. The measured radiometric temperature of the CMB is 2.721 +/- 0.010 K at 10 GHz and 2.694 +/- 0.032 K at 30 GHz.

Collaboration


Dive into the P. M. Lubin's collaboration.

Top Co-Authors

Avatar

P. R. Meinhold

University of California

View shared research outputs
Top Co-Authors

Avatar

M. D. Seiffert

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thyrso Villela

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Kogut

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. E. Lange

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Newton Figueiredo

Universidade Federal de Itajubá

View shared research outputs
Top Co-Authors

Avatar

C. L. Bennett

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge