Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanie U. Wetzels is active.

Publication


Featured researches published by Stefanie U. Wetzels.


Journal of Animal Science | 2016

Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle.

P. Pourazad; R. Khiaosa-ard; M. Qumar; Stefanie U. Wetzels; Fenja Klevenhusen; Barbara U. Metzler-Zebeli; Q. Zebeli

The objective of this study was to investigate the effect of the pattern of concentrate-rich feeding on subacute ruminal acidosis (SARA), its severity, and the corresponding changes in VFA concentration. Eight rumen-cannulated Holstein cows were assigned to a 2 × 2 crossover design with 2 SARA challenge models and 2 experimental runs ( = 8 per treatment). Each run lasted for 40 d, consisting of a 6-d baseline, a 6-d gradual grain adaptation, and a 28-d SARA challenge period. The 2 SARA challenge models were transient (TRA) and persistent (PER) SARA. Initially, all cows were subjected to a forage-only diet (baseline) and gradually switched to 60% concentrate (DM basis). Then, cows in the PER model were continuously challenged for 28 d, whereas cows in the TRA model had a 7-d break from the SARA diet and were fed the forage-only diet after the first 7 d of SARA challenge. Thereafter, the TRA cows were rechallenged with the SARA diet. Wireless ruminal pH sensors were used to obtain ruminal pH profiles and temperature over the experimental period. For the determination of VFA, free ruminal liquid (FRL) and particle-associated ruminal liquid (PARL) were collected once for the baseline and twice (d 20 and 40 for the PER model) or 3 times (d 13, 30, and 40 for the TRA model) during SARA, each time at 0, 4, and 8 h after the morning feeding. Cows in both models experienced SARA albeit with day-to-day variation. From the start until the first 7-d SARA, cows of both models had similar pH profiles, but during the rechallenge, SARA was more severe in the TRA model than in the PER model based on lower daily mean ruminal pH (5.93 vs. 6.15; SEM 0.058) and double the amount of time at pH < 5.8 (497 vs. 278 min; SEM 68.61, < 0.05). Mean ruminal temperature was raised during SARA compared with the baseline (38.9 vs. 38.7°C; SEM 0.057, < 0.001). Concentrations of VFA increased with increasing time after feeding ( < 0.001). In general, SARA challenge (d 40 vs. the baseline), but not the challenge model, altered VFA concentrations and profile of both FRL and PARL by increasing the amounts of propionate and butyrate, whereas total VFA concentration was less affected. Proportions of VFA shifted over the duration of SARA challenge with more propionate but less acetate and butyrate proportions with advancing days of SARA challenge, leading to the values of the last SARA day being different from the earlier days ( < 0.05). In conclusion, the TRA condition led to the higher severity of SARA, but factors beyond feed intake and VFA alterations seemed to play a role.


Journal of Animal Science | 2014

Technical note: Evaluation of a real-time wireless pH measurement system relative to intraruminal differences of digesta in dairy cattle

Fenja Klevenhusen; P. Pourazad; Stefanie U. Wetzels; M. Qumar; Annabella Khol-Parisini; Q. Zebeli

The aim of this study was to evaluate the accuracy and precision of indwelled wireless sensors relative to intrareticuloruminal differences in dairy cows transitioned from a forage to a high-concentrate diet. A feeding trial was performed with 8 rumen-cannulated Holstein cows. The cows were stepwise switched from 0 to 60% concentrate in the diet and fed 5 wk. Samples from the free ruminal liquid (FRL) from the ventral rumen and from the particle-associated ruminal liquid (PARL) in the rumen mat were manually taken at 0, 4, and 8 h after the morning feeding on d 0, 7, 14, and 34 of the experiment through the ruminal cannula to measure pH in FRL and PARL using a pH electrode. Additionally indwelling reticular wireless pH sensors were used to measure reticular pH every 10 min throughout the experiment. Precision and accuracy properties as a measure of reproducibility of the methods were statistically evaluated. Data showed significant differences among pH readings of indwelling sensors and pH measurements taken by means of a conventional electrode in both FRL and PARL (P<0.05). These differences became more evident when 60% concentrate diet was fed. Across all experimental days, the pH of the FRL was greatest and the pH reported by indwelling sensors intermediate, whereas the pH of PARL was lowest. The concordance correlation coefficient (CCC) analysis revealed a high agreement between indwelling sensors and FRL (CCC=0.709) but a low agreement with the pH of PARL (CCC=0.495). In conclusion, the study indicated that wireless sensors can satisfactorily reflect the pH of FRL but poorly reflect that of PARL.


Journal of Dairy Science | 2017

Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge

Stefanie U. Wetzels; Evelyne Mann; P. Pourazad; M. Qumar; Beate Pinior; Barbara U. Metzler-Zebeli; Martin Wagner; Stephan Schmitz-Esser; Q. Zebeli

Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in cattle, characterized by intermittent drops in ruminal pH. This study investigated the effect of a gradual adaptation and continuously induced long-term SARA challenge diet on the epimural bacterial community structure in the rumen of cows. Eight rumen-cannulated nonlactating Holstein cows were transitioned over 1 wk from a forage-based baseline feeding diet (grass silage-hay mix) to a SARA challenge diet, which they were fed for 4 wk. The SARA challenge diet consisted of 60% concentrates (dry matter basis) and 40% grass silage-hay mix. Rumen papillae biopsies were taken at the baseline, on the last day of the 1-wk adaptation, and on the last day of the 4-wk SARA challenge period; ruminal pH was measured using wireless sensors. We isolated DNA from papillae samples for 16S rRNA gene amplicon sequencing using Illumina MiSeq. Sequencing results of most abundant key phylotypes were confirmed by quantitative PCR. Although they were fed similar amounts of concentrate, cows responded differently in terms of ruminal pH during the SARA feeding challenge. Cows were therefore classified as responders (n = 4) and nonresponders (n = 4): only responders met the SARA criterion of a ruminal pH drop below 5.8 for longer than 330 min/d. Data showed that Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla, and at genus level, Campylobacter and Kingella showed highest relative abundance, at 15.5 and 7.8%, respectively. Diversity analyses revealed a significant increase of diversity after the 1-wk adaptation but a decrease of diversity and species richness after the 4-wk SARA feeding challenge, although without distinction between responders and nonresponders. At the level of the operational taxonomic unit, we detected diet-specific shifts in epimural community structure, but in the overall epimural bacterial community structure, we found no differences between responders and nonresponders. Correlation analysis revealed significant associations between grain intake and operational taxonomic unit abundance. The study revealed major shifts in the 3 dominating phyla and, most importantly, a loss of diversity in the epimural bacterial communities during a long-term SARA diet challenge, in which 60% concentrate supply for 4 wk was instrumental rather than the magnitude of the drop of ruminal pH below 5.8.


Journal of Dairy Science | 2015

Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats.

Stefanie U. Wetzels; Evelyne Mann; Barbara U. Metzler-Zebeli; Martin Wagner; Fenja Klevenhusen; Q. Zebeli; Stephan Schmitz-Esser

Ecological balance in the rumen is highly sensitive to concentrate-rich diets. Yet the effects of these feeding practices on the caprine bacterial epimural microbiome (CBEM), a microbial community with putative important physiological functions in the rumen, are largely unexplored. This study aimed to investigate the effect of dietary concentrate amount on ruminal CBEM. Seventeen growing goats were fed diets with 0 [n=5; 6.2MJ of metabolizable energy (ME)/d], 30 (n=6; 7.3MJ of /d), or 60% (n=6; 10.2MJ of ME/d) concentrate for 6 wk. Two hours after their last feeding, goats were euthanized and tissue samples of the ventral rumen wall were collected, washed in phosphate-buffered saline to detach loosely attached bacteria, and stored at -20°C for further processing. Genomic DNA was isolated from thawed rumen mucosa samples and used for Roche/454 Life Science (Branford, CT) 16S rRNA gene amplicon pyrosequencing yielding 122,458 reads. Pyrosequencing data were clustered into 1,879 operational taxonomic units (OTU; 0.03 distance level). Pyrosequencing revealed Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetes as the most abundant phyla (97.7%). Compared with the 30% group, both the 60 and 0% concentrate groups harbored significantly more Firmicutes and SR1, respectively. On an OTU level, a Bergeriella-related OTU was most abundant in the CBEM, followed by 2 Campylobacter OTU, which responded differently to diets: 1 OTU was significantly increased whereas the other significantly decreased with highest concentrate amount in the diet. At the genus level, the 0% concentrate group harbored increased Kingella-like sequences compared with the other feeding groups. Furthermore, the 0% concentrate group tended to have more Bergeriella than the 30 and 60% concentrate groups. The genus Bergeriella was significantly decreased in the 60% feeding group compared with the other diets. In conclusion, this is the first report of CBEM using deep-sequencing methods on the genus and OTU level, and our study revealed major shifts in the CBEM in response to concentrate-rich diets with potential health relevance in goats.


PLOS ONE | 2016

Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets

M. Qumar; R. Khiaosa-ard; P. Pourazad; Stefanie U. Wetzels; Fenja Klevenhusen; Wolfgang Kandler; Jörg R. Aschenbach; Q. Zebeli

Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding.


Frontiers in Microbiology | 2016

Epimural Indicator Phylotypes of Transiently-Induced Subacute Ruminal Acidosis in Dairy Cattle

Stefanie U. Wetzels; Evelyne Mann; Barbara U. Metzler-Zebeli; P. Pourazad; M. Qumar; Fenja Klevenhusen; Beate Pinior; Martin Wagner; Q. Zebeli; Stephan Schmitz-Esser

The impact of a long-term subacute rumen acidosis (SARA) on the bovine epimural bacterial microbiome (BEBM) and its consequences for rumen health is poorly understood. This study aimed to investigate shifts in the BEBM during a long-term transient SARA model consisting of two concentrate-diet-induced SARA challenges separated by a 1-week challenge break. Eight cows were fed forage and varying concentrate amounts throughout the experiment. In total, 32 rumen papilla biopsies were taken for DNA isolation (4 sampling time points per cow: at the baseline before concentrate was fed, after the first SARA challenge, after the challenge break, and after the second SARA challenge). Ruminal pH was continuously monitored. The microbiome was determined using Illumina MiSeq sequencing of the 16S rRNA gene (V345 region). In total 1,215,618 sequences were obtained and clustered into 6833 operational taxonomic units (OTUs). Campylobacter and Kingella were the most abundant OTUs (16.5 and 7.1%). According to ruminal pH dynamics, the second challenge was more severe than the first challenge. Species diversity estimates and evenness increased during the challenge break compared to all other sampling time points (P < 0.05). During both SARA challenges, Kingella- and Azoarcus-OTUs decreased (0.5 and 0.4 fold-change) and a dominant Ruminobacter-OTU increased during the challenge break (18.9 fold-change; P < 0.05). qPCR confirmed SARA-related shifts. During the challenge break noticeably more OTUs increased compared to other sampling time points. Our results show that the BEBM re-establishes the baseline conditions slower after a SARA challenge than ruminal pH. Key phylotypes that were reduced during both challenges may help to establish a bacterial fingerprint to facilitate understanding effects of SARA conditions on the BEBM and their consequences for the ruminant host.


PLOS ONE | 2017

Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations

Sina-Catherine Siegerstetter; Stephan Schmitz-Esser; Elizabeth Magowan; Stefanie U. Wetzels; Q. Zebeli; Peadar G. Lawlor; Niamh O'Connell; Barbara U. Metzler-Zebeli

Intestinal microbe-host interactions can affect the feed efficiency (FE) of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI) and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34) and high (n = 35) RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance) and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05). In males, Ruminococcus in cecal digesta (3.1% relative abundance) and Dorea in feces (<0.1% relative abundance) were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance) related to high RFI (P < 0.05). Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens) genes correlated with high RFI (P < 0.05). In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low-abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful targets for dietary strategies.


Frontiers in Microbiology | 2015

The Metabolically Active Bacterial Microbiome of Tonsils and Mandibular Lymph Nodes of Slaughter Pigs

Evelyne Mann; Beate Pinior; Stefanie U. Wetzels; Barbara U. Metzler-Zebeli; Martin Wagner; Stephan Schmitz-Esser

The exploration of microbiomes in lymphatic organs is relevant for basic and applied research into explaining microbial translocation processes and understanding cross-contamination during slaughter. This study aimed to investigate whether metabolically active bacteria (MAB) could be detected within tonsils and mandibular lymph nodes (MLNs) of pigs. The hypervariable V1-V2 region of the bacterial 16S rRNA genes was amplified from cDNA from tonsils and MLNs of eight clinically healthy slaughter pigs. Pyrosequencing yielded 82,857 quality-controlled sequences, clustering into 576 operational taxonomic units (OTUs), which were assigned to 230 genera and 16 phyla. The actual number of detected OTUs per sample varied highly (23–171 OTUs). Prevotella zoogleoformans and Serratia proteamaculans (best type strain hits) were most abundant (10.6 and 41.8%, respectively) in tonsils and MLNs, respectively. To explore bacterial correlation patterns between samples of each tissue, pairwise Spearman correlations (rs) were calculated. In total, 194 strong positive and negative correlations |rs| ≥ 0.6 were found. We conclude that (i) lymphatic organs harbor a high diversity of MAB, (ii) the occurrence of viable bacteria in lymph nodes is not restricted to pathological processes and (iii) lymphatic tissues may serve as a contamination source in pig slaughterhouses. This study confirms the necessity of the EFSA regulation with regard to a meat inspection based on visual examinations to foster a minimization of microbial contamination.


PLOS ONE | 2018

The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens

Stefanie U. Wetzels; Melanie Eger; Marion Burmester; Lothar Kreienbrock; Amir Abdulmawjood; Beate Pinior; Martin Wagner; Gerhard Breves; Evelyne Mann

The rumen simulation technique (RUSITEC) is a well-established semicontinuous in vitro model for investigating ruminal fermentation; however, information on the stability of the ruminal bacterial microbiota and metabolome in the RUSITEC system is rarely available. The availability of high resolution methods, such as high-throughput sequencing and metabolomics improve our knowledge about the rumen microbial ecosystem and its fermentation processes. Thus, we used Illumina MiSeq 16S rRNA amplicon sequencing and a combination of direct injection mass spectrometry with a reverse-phase LC-MS/MS to evaluate the dynamics of the bacterial community and the concentration of several metabolites in a RUSITEC experiment as a function of time and in response to a challenge with a pathogenic Clostridium perfringens (C. perfringens) strain. After four days of equilibration, samples were collected on days 5, 6, 7, 10, 12 and 15 of the steady-state and experimental period. From a total of six fermenters, three non-infected fermenters were used for investigating time-dependent alterations; three fermenters were incubated with C. perfringens and compared with the non-infected vessels at days 10, 12 and 15. Along the time-line, there was no statistically significant change of the overall bacterial community, however, some phylotypes were enriched at certain time points. A decrease in Fibrobacter and Elusimicrobia over time was followed by an increase in Firmicutes and Actinobacteria. In contrast, classical fermentation measurements such as pH, redox potential, NH3-N, short chain fatty acids and the concentrations of metabolites determined by metabolomics (biogenic amines, hexoses and amino acids) remained stable throughout the experiment. In response to C. perfringens addition the concentrations of several amino acids increased. Although the overall bacterial community was not altered here either, some minor changes such as an enrichment of Synergistetes and Bacteroidetes were detectable over time. In conclusion, both, the bacterial community composition and the metabolome in the RUSITEC system were relatively stable during the experiment.


Meat Science | 2016

Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs

Evelyne Mann; Stefanie U. Wetzels; Beate Pinior; Barbara U. Metzler-Zebeli; Martin Wagner; Stephan Schmitz-Esser

The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples.

Collaboration


Dive into the Stefanie U. Wetzels's collaboration.

Top Co-Authors

Avatar

Q. Zebeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Barbara U. Metzler-Zebeli

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Evelyne Mann

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Schmitz-Esser

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Beate Pinior

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

M. Qumar

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

P. Pourazad

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Fenja Klevenhusen

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Martin Wagner

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martin Wagner

Chemnitz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge