Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Valek is active.

Publication


Featured researches published by P. Valek.


Science | 2009

Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX)

D. J. McComas; Fredric Allegrini; P. Bochsler; M. Bzowski; E. R. Christian; Geoffrey Crew; Robert DeMajistre; H. J. Fahr; Horst Fichtner; Priscilla C. Frisch; H. O. Funsten; S. A. Fuselier; G. Gloeckler; Mike Gruntman; J. Heerikhuisen; Vladislav V. Izmodenov; Paul Henry Janzen; P. Knappenberger; S. M. Krimigis; Harald Kucharek; M. A. Lee; G. Livadiotis; S. A. Livi; R. J. MacDowall; D. G. Mitchell; E. Möbius; T. E. Moore; Nikolai V. Pogorelov; Daniel B. Reisenfeld; Edmond C. Roelof

Whats Happening in the Heliosphere The influence of the Sun is felt well beyond the orbits of the planets. The solar wind is a stream of charged particles emanating from the Sun that carves a bubble in interstellar space known as the heliosphere and shrouds the entire solar system. The edge of the heliosphere, the region where the solar wind interacts with interstellar space, is largely unexplored. Voyager 1 and 2 crossed this boundary in 2004 and 2007, respectively, providing detailed but only localized information. In this issue (see the cover), McComas et al. (p. 959, published online 15 October), Fuselier et al. (p. 962, published online 15 October), Funsten et al. (p. 964, published online 15 October), and Möbius et al. (p. 969, published online 15 October) present data taken by NASAs Interstellar Boundary Explorer (IBEX). Since early 2009, IBEX has been building all-sky maps of the emissions of energetic neutral atoms produced at the boundary between the heliosphere and the interstellar medium. These maps have unexpectedly revealed a narrow band of emission that bisects the two Voyager locations at energies ranging from 0.2 to 6 kiloelectron volts. Emissions from the band are two- to threefold brighter than outside the band, in contrast to current models that predict much smaller variations across the sky. By comparing the IBEX observations with models of the heliosphere, Schwadron et al. (p. 966, published online 15 October) show that to date no model fully explains the observations. The model they have developed suggests that the interstellar magnetic field plays a stronger role than previously thought. In addition to the all-sky maps, IBEX measured the signatures of H, He, and O flowing into the heliosphere from the interstellar medium. In a related report, Krimigis et al. (p. 971, published online 15 October) present an all-sky image of energetic neutral atoms with energies ranging between 6 and 13 kiloelectron volts obtained with the Ion and Neutral Camera onboard the Cassini spacecraft orbiting Saturn. It shows that parts of the structure observed by IBEX extend to high energies. These data indicate that the shape of the heliosphere is not consistent with that of a comet aligned in the direction of the Suns travel through the galaxy as was previously thought. Observations by the Interstellar Boundary Explorer have revealed surprising features in the interaction between the heliosphere and the interstellar medium. The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.


Geophysical Research Letters | 2001

First medium energy neutral atom (MENA) Images of Earth's magnetosphere during substorm and storm-time

C. J. Pollock; Kazushi Asamura; M. M. Balkey; J. L. Burch; H. O. Funsten; M. Grande; Mike Gruntman; M. G. Henderson; J.-M. Jahn; Michael L. Lampton; Michael W. Liemohn; D. J. McComas; T. Mukai; S. Ritzau; Mark L. Schattenburg; Earl Scime; R. M. Skoug; P. Valek; M. Wüest

InitialENA images obtained with the MENA imager on the IMAGE observatory show that ENAs ema- nating from Earths magnetosphere at least crudely track both Dst and Kp. Images obtained during the storm of August 12, 2000, clearly show strong ring current asymme- try during storm main phase and early recovery phase, and a high degree of symmetry during the late recovery phase. Thus, these images establish the existence of both partial and complete ring currents during the same storm. Further, they suggest that ring current loss through the day side mag- netopause dominates other loss processes during storm main phase and early recovery phase.


Space Science Reviews | 2008

The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons

D. J. McComas; F. Allegrini; Fran Bagenal; P. J. Casey; P. A. Delamere; D. Demkee; G. Dunn; H. A. Elliott; J. Hanley; K. Johnson; J. Langle; Greg Miller; S. Pope; M. Reno; B. Rodriguez; N. A. Schwadron; P. Valek; S. Weidner

AbstractnThe Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. To meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft.n


Journal of Geophysical Research | 2012

Two Wide‐Angle Imaging Neutral‐Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm

D. J. McComas; N. Buzulukova; M. G. Connors; M. A. Dayeh; J. Goldstein; H. O. Funsten; S. A. Fuselier; N. A. Schwadron; P. Valek

[1]xa0This study is the first to combine energetic neutral atom (ENA) observations from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) and Interstellar Boundary Explorer (IBEX). Here we examine the arrival of an interplanetary shock and the subsequent geomagnetically effective substorm on 5 April 2010, which was associated with the Galaxy 15 communications satellite anomaly. IBEX shows sharply enhanced ENA emissions immediately upon compression of the dayside magnetosphere at 08:26:17+/−9xa0s UT. The compression drove a markedly different spectral shape for the dayside emissions, with a strong enhancement at energiesxa0>1xa0keV, which persisted for hours after the shock arrival, consistent with the higher solar wind speed, density, and dynamic pressure (∼10 nPa) after the shock. TWINS ENA observations indicate a slower response of the ring current and precipitation of ring current ions as low-altitude emissions ∼15xa0min later, with thexa0>50xa0keV ion precipitation leading thexa0<10xa0keV precipitation by ∼20xa0min. These observations suggest internal magnetospheric processes are occurring after compression of the magnetosphere and before the ring current ions end up in the loss cone and precipitate into the ionosphere. We also compare MHD simulation results with both the TWINS and IBEX ENA observations; while the overall fluxes and distributions of emissions were generally similar, there were significant quantitative differences. Such differences emphasize the complexity of the magnetospheric system and importance of the global perspective for macroscopic magnetospheric studies. Finally, Appendix A documents important details of the TWINS data processing, including improved binning procedures, smoothing of images to a given level of statistical accuracy, and differential background subtraction.


Journal of Geophysical Research | 2010

Comparison of TWINS images of low-altitude emission of energetic neutral atoms with DMSP precipitating ion fluxes

D. Bazell; Edmond C. Roelof; T. Sotirelis; Pontus C Son Brandt; Hari Nair; P. Valek; J. Goldstein; D. J. McComas

[1]xa0The brightest energetic neutral atom (ENA) intensity viewed by spacecraft in high-inclination Earth orbit is from low-altitude emission (LAE). It is a prominent feature in the stereo ENA images obtained by cameras on the NASA TWINS 1/2 Mission of Opportunity. This emission is produced by energetic magnetospheric ions precipitating into the atomic oxygen exosphere at latitudes near the auroral zones at altitudes ∼300 km. The ions undergo multiple atomic collisions including charge exchange of ions and stripping of the resulting neutrals. Consequently, this is a “thick target” process. We introduce a “thick-target” approximation that allows us to extract the shape of the spatially averaged spectra of the precipitating ions from the ENA spectra in the TWINS 1/2 pixels viewing the LAE from near their orbital apogees. These ENA-extracted ion spectra are compared with in situ precipitating ion spectra measured concurrently by DMSP satellites (F15 and F16) at ∼825 km altitude, while they are passing directly over the LAE regions in the TWINS 1/2 images. We obtain good agreement between the shape of the ENA-extracted and in situ ion spectra from three distinct precipitation regions over energies from 2 to 32 keV (assuming precipitating protons). The absolute normalization of the ENA-extracted and in situ spectra depends upon the TWINS viewing geometry because the ENA LAE source is not resolved by the imager. None of the spectral shapes obtained is consistent with a simple thermal intensity spectrum with kT = 5 keV.


Journal of Geophysical Research | 2010

Evolution of low‐altitude and ring current ENA emissions from a moderate magnetospheric storm: Continuous and simultaneous TWINS observations

P. Valek; Pontus C Son Brandt; N. Buzulukova; M.-C. Fok; J. Goldstein; D. J. McComas; J. D. Perez; Edmond C. Roelof; R. M. Skoug

[1]xa0The moderate storm of 22 July 2009 is the largest measured during the extended solar minimum between December 2006 and March 2010. We present observations of this storm made by the two wide-angle imaging neutral-atom spectrometers (TWINS) mission. The TWINS mission measures energetic neutral atoms (ENAs) using sensors mounted on two separate spacecrafts. Because the two spacecrafts orbital planes are significantly offset, the pair provides a nearly optimal combination of continuous magnetospheric observations from at least one of the TWINS platforms with several hours of simultaneous, dual-platform viewing over each orbit. The ENA imaging study presented in this paper is the first reported magnetospheric storm for which both continuous coverage and stereoscopic imaging were available. Two populations of ENAs are observed during this storm. The first are emissions from the ring current and come from a parent population of trapped ions in the inner magnetosphere. The second, low-altitude emissions (LAEs), are the result of precipitating ions which undergo multiple charge exchange and stripping collisions with the oxygen exosphere. The temporal evolution of this storm shows that the LAEs begin earlier and are the brightest emissions seen during the main phase, while later, during the recovery, the LAE is only as bright as the bulk ring current emissions.


Journal of Geophysical Research | 2014

The Comprehensive Inner Magnetosphere-Ionosphere Model

M.-C. Fok; N. Buzulukova; S.-H. Chen; Alex Glocer; T. Nagai; P. Valek; J. D. Perez

Simulation studies of the Earths radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5–9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.


Journal of Geophysical Research | 2010

Ring current dynamics in moderate and strong storms: Comparative analysis of TWINS and IMAGE/HENA data with the Comprehensive Ring Current Model

N. Buzulukova; M.-C. Fok; J. Goldstein; P. Valek; D. J. McComas; Pontus C Son Brandt

[1]xa0We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.


Geophysical Research Letters | 2002

Filling and emptying of the plasma sheet: Remote observations with 1–70 keV energetic neutral atoms

D. J. McComas; P. Valek; J. L. Burch; C. J. Pollock; R. M. Skoug; M. F. Thomsen

[1]xa0This paper shows the first energetic neutral atom (ENA) observations of the extended plasma sheet, taken with the Medium Energy Neutral Atom (MENA) imager on the IMAGE spacecraft. We show that ENA emissions can be routinely observed back to several tens of RE deep in the magnetotail when IMAGE is in an appropriate orbital position. Enhanced emissions (high plasma sheet densities) are associated with high solar wind densities and with super dense plasma sheet observations at geosynchronous orbit. We examine two magnetospheric storm intervals where plasma sheet loading begins prior to the storms and continues under all IMF BZ orientations, reaching its maximum during the peaks of the storms. For several days following these storms ENA emissions are weak, indicating that the plasma sheet is depleted after the storms. This study indicates that routine ENA observations of the plasma sheet content could become an important part of space weather monitoring.


Science | 2016

Pluto’s interaction with its space environment: Solar wind, energetic particles, and dust

Fran Bagenal; Mihaly Horanyi; D. J. McComas; Ralph L. McNutt; H. A. Elliott; Matthew Hill; L. E. Brown; P. A. Delamere; P. Kollmann; S. M. Krimigis; M. Kusterer; C. M. Lisse; D. G. Mitchell; M. Piquette; A. R. Poppe; Darrell F. Strobel; J. R. Szalay; P. Valek; Jon D. Vandegriff; S. Weidner; E. J. Zirnstein; S. A. Stern; Kimberly Ennico; Catherine B. Olkin; Harold A. Weaver; Leslie A. Young

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto modifies its space environment, interacting with the solar wind plasma and energetic particles. INTRODUCTION The scientific objectives of NASA’s New Horizons mission include quantifying the rate at which atmospheric gases are escaping Pluto and describing its interaction with the surrounding space environment. The two New Horizons instruments that measure charged particles are the Solar Wind Around Pluto (SWAP) instrument and the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. The Venetia Burney Student Dust Counter (SDC) counts the micrometer-sized dust grains that hit the detectors mounted on the ram direction of the spacecraft. This paper describes preliminary results from these three instruments when New Horizons flew past Pluto in July 2015 at a distance of 32.9 astronomical units (AU) from the Sun. RATIONALE Initial studies of the solar wind interaction with Pluto’s atmosphere suggested that the extent of the interaction depends on whether the atmospheric escape flux is strong (producing a comet-like interaction, where the interaction region is dominated by ion pick-up and is many times larger than the object) or weak (producing a Mars-like interaction dominated by ionospheric currents with limited upstream pick-up and where the scale size is comparable to the object). Before the New Horizons flyby, the estimates of the atmospheric escape rate ranged from as low as 1.5 × 1025 molecules s–1 to as high as 2 × 1028 molecules s–1. Combining these wide-ranging predictions of atmospheric escape rates with Voyager and New Horizons observations of extensive variability of the solar wind at 33 AU produced estimates of the scale of the interaction region that spanned all the way from 7 to 1000 Pluto radii (RP). RESULTS At the time of the flyby, SWAP measured the solar wind conditions near Pluto to be nearly constant and stronger than usual. The abnormally high solar wind density and associated pressures for this distance are likely due to a relatively strong traveling interplanetary shock that passed over the spacecraft 5 days earlier. Heavy ions picked up sunward from Pluto should mass-load and slow the solar wind. However, there is no evidence of such solar wind slowing in the SWAP data taken as near as ~20 RP inbound, which suggests that very few atmospheric molecules are escaping upstream and becoming ionized. The reorientation of the spacecraft to enable imaging of the Pluto system meant that both the SWAP and PEPSSI instruments were turned away from the solar direction, thus complicating our analysis of the particle data. Nevertheless, when the spacecraft was ~10 RP from Pluto, SWAP data indicated that the solar wind had slowed by ~20%. We use these measurements to estimate a distance of ~6 RP for the 20% slowing location directly upstream of Pluto. At this time, PEPSSI detected an enhancement of ions with energies in the kilo–electron volt range. The SDC, which measures grains with radii >1.4 µm, detected one candidate impact in ±5 days around its closest approach, indicating a dust density estimate of n = 1.2 km–3, with a 90% confidence level range of 0.6 < n < 4.6 km–3. CONCLUSION New Horizons’s particle instruments revealed an interaction region confined sunward of Pluto to within ~6 RP. The surprisingly small size is consistent with a reduced atmospheric escape rate of 6 × 1025 CH4 molecules s–1, as well as a particularly high solar wind flux due to a passing compression region. This region is similar in scale to the solar wind interaction with Mars’s escaping atmosphere. Beyond Pluto, the disturbance persists to distances greater than 400 RP downstream. Interaction of the solar wind with Pluto’s extended atmosphere. Protons and electrons streaming from the Sun at ~400 km s–1 are slowed and deflected around Pluto because of a combination of ionization of Pluto’s atmosphere and electrical currents induced in Pluto’s ionosphere. CREDIT: STEVE BARTLETT AND NASA’S SCIENTIFIC VISUALIZATION STUDIO The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region’s surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons’ closest approach, indicating an upper limit of <4.6 kilometers–3 for the dust density in the Pluto system.

Collaboration


Dive into the P. Valek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Goldstein

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

F. Allegrini

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Fran Bagenal

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. J. Pollock

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

N. Buzulukova

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

H. O. Funsten

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Weidner

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

J. E. P. Connerney

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge