Pachiyappan Kamarajan
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pachiyappan Kamarajan.
Cancer | 2011
Turki Y. Alhazzazi; Pachiyappan Kamarajan; Nam Eok Joo; Jing Yi Huang; Eric Verdin; Nisha J. D'Silva; Yvonne L. Kapila
Several sirtuin family members (SIRT1‐7), which are evolutionarily conserved NAD‐dependent deacetylases, play an important role in carcinogenesis. However, their role in oral cancer has not yet been investigated. Therefore, the objective of this study was to investigate whether sirtuins play a role in oral cancer carcinogenesis.
Biochimica et Biophysica Acta | 2011
Turki Y. Alhazzazi; Pachiyappan Kamarajan; Eric Verdin; Yvonne L. Kapila
Sirtuins (SIRT1-7), the mammalian homologues of the Sir2 gene in yeast, have emerging roles in age-related diseases, such as cardiac hypertrophy, diabetes, obesity, and cancer. However, the role of several sirtuin family members, including SIRT1 and SIRT3, in cancer has been controversial. The aim of this review is to explore and discuss the seemingly dichotomous role of SIRT3 in cancer biology with particular emphasis on its potential role as a tumor promoter and tumor suppressor. This review will also discuss the potential role of SIRT3 as a novel therapeutic target to treat cancer.
Journal of Proteome Research | 2011
B. S. Somashekar; Pachiyappan Kamarajan; Theodora E. Danciu; Yvonne L. Kapila; Arul M. Chinnaiyan; Thekkelnaycke M. Rajendiran; Ayyalusamy Ramamoorthy
High-resolution magic-angle spinning (HR-MAS) proton NMR spectroscopy is used to explore the metabolic signatures of head and neck squamous cell carcinoma (HNSCC) which included matched normal adjacent tissue (NAT) and tumor originating from tongue, lip, larynx and oral cavity, and associated lymph-node metastatic (LN-Met) tissues. A total of 43 tissues (18 NAT, 18 Tumor and 7 LN-Met) from 22 HNSCC patients were analyzed. Principal Component Analysis of NMR data showed a clear classification between NAT and tumor tissues, however, LN-Met tissues were classified among tumor. A partial least-squares discriminant analysis model generated from NMR metabolic profiles was used to differentiate normal from tumor samples (Q(2) > 0.80, Receiver Operator Characteristic area under the curve >0.86, using 7-fold cross validation). HNSCC and LN-Met tissues showed elevated levels of lactate, amino acids including leucine, isoleucine, valine, alanine, glutamine, glutamate, aspartate, glycine, phenylalanine and tyrosine, choline containing compounds, creatine, taurine, glutathione, and decreased levels of triglycerides. These elevated metabolites were associated with highly active glycolysis, increased amino acids influx (anaplerosis) into the TCA cycle, altered energy metabolism, membrane choline phospholipid metabolism, and oxidative and osmotic defense mechanisms. Moreover, decreased levels of triglycerides may indicate lipolysis followed by β-oxidation of fatty acids that may exist to deliver bioenergy for rapid tumor cell proliferation and growth.
Cancer Medicine | 2012
Nam Eok Joo; Kathryn Ritchie; Pachiyappan Kamarajan; Di Miao; Yvonne L. Kapila
Nisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma (HNSCC), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC, in part, through CHAC1, a proapoptotic cation transport regulator, and through a concomitant CHAC1‐independent influx of extracellular calcium. In addition, although CHAC1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC1s new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC, and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.
Journal of Applied Microbiology | 2016
Jae M. Shin; J.W. Gwak; Pachiyappan Kamarajan; J.C. Fenno; Alexander H. Rickard; Yvonne L. Kapila
Nisin is a bacteriocin produced by a group of Gram‐positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post‐translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug‐resistant bacterial strains, such as methicillin‐resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram‐positive and Gram‐negative disease‐associated pathogens. Nisin has been reported to have anti‐biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host‐defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.
The International Journal of Biochemistry & Cell Biology | 2012
Pratima Tripathi; Pachiyappan Kamarajan; B. S. Somashekar; Neil MacKinnon; Arul M. Chinnaiyan; Yvonne L. Kapila; Thekkelnaycke M. Rajendiran; Ayyalusamy Ramamoorthy
A better understanding of molecular pathways involved in malignant transformation of head and neck squamous cell carcinoma (HNSCC) is essential for the development of novel and efficient anti-cancer drugs. To delineate the global metabolism of HNSCC, we report (1)H NMR-based metabolic profiling of HNSCC cells from five different patients that were derived from various sites of the upper aerodigestive tract, including the floor of mouth, tongue and larynx. Primary cultures of normal human oral keratinocytes (NHOK) from three different donors were used for comparison. (1)H NMR spectra of polar and non-polar extracts of cells were used to identify more than thirty-five metabolites. Principal component analysis performed on the NMR data revealed a clear classification of NHOK and HNSCC cells. HNSCC cells exhibited significantly altered levels of various metabolites that clearly revealed dysregulation in multiple metabolic events, including Warburg effect, oxidative phosphorylation, energy metabolism, TCA cycle anaplerotic flux, glutaminolysis, hexosamine pathway, osmo-regulatory and anti-oxidant mechanism. In addition, significant alterations in the ratios of phosphatidylcholine/lysophosphatidylcholine and phosphocholine/glycerophosphocholine, and elevated arachidonic acid observed in HNSCC cells reveal an altered membrane choline phospholipid metabolism (MCPM). Furthermore, significantly increased activity of phospholipase A(2) (PLA(2)), particularly cytosolic PLA(2) (cPLA(2)) observed in all the HNSCC cells confirm an altered MCPM. In summary, the metabolomic findings presented here can be useful to further elucidate the biological aspects that lead to HNSCC, and also provide a rational basis for monitoring molecular mechanisms in response to chemotherapy. Moreover, cPLA(2) may serve as a potential therapeutic target for anti-cancer therapy of HNSCC.
PLOS ONE | 2010
Flavia Q. Pirih; Megan N. Michalski; Sun W. Cho; Amy J. Koh; Janice E. Berry; Eduardo Ghaname; Pachiyappan Kamarajan; Edith Bonnelye; Charles W. Ross; Yvonne L. Kapila; Pierre Jurdic; Laurie K. McCauley
Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.
PLOS ONE | 2015
Pachiyappan Kamarajan; Takayuki Hayami; Bibiana Matte; Yang Liu; Theodora E. Danciu; Ayyalusamy Ramamoorthy; Francis P. Worden; Sunil Kapila; Yvonne L. Kapila
The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.
Molecular Biology of the Cell | 2010
Pachiyappan Kamarajan; Julius Bunek; Yong Lin; Gabriel Núñez; Yvonne L. Kapila
RIP shuttles between CD95/Fas death and FAK survival signaling to mediate anoikis.
Apoptosis | 2007
Pachiyappan Kamarajan; Yvonne L. Kapila
Fibronectin regulates many cellular processes, including migration, proliferation, differentiation, and survival. Previously, we showed that squamous cell carcinoma (SCC) cell aggregates escape suspension-induced, p53-mediated anoikis by engaging in fibronectin-mediated survival signals through focal adhesion kinase (FAK). Here we report that an altered matrix, consisting of a mutated, nonfunctional high-affinity heparin-binding domain and the V region of fibronectin (V+H−), induced anoikis in human SCC cells; this response was blocked by inhibitors of caspase-8 and caspase-3. Anoikis was mediated by downregulation of integrin alpha v in a panel of SCC cells and was shown to be proteasome-dependent. Overexpression of integrin alpha v or FAK inhibited the increase in caspase-3 activation and apoptosis, whereas suppression of alpha v or FAK triggered a further significant increase in apoptosis, indicating that the apoptosis was mediated by suppression of integrin alpha v levels and dephosphorylation of FAK. Treatment with V+H− decreased the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, and direct activation of ERK by constitutively active MEK1, an ERK kinase, increased ERK1 and ERK2 phosphorylation and inhibited the increase in apoptosis induced by V+H−. ERK acted downstream from alpha v and FAK signals, since alpha v and FAK overexpression inhibited both the decrease in ERK phosphorylation and the increase in anoikis triggered by V+H−. These findings provide evidence that mutations in the high-affinity heparin-binding domain in association with the V region of fibronectin, or altered fibronectin matrices, induce anoikis in human SCC cells by modulating integrin alpha v-mediated phosphorylation of FAK and ERK.