Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paige N. Vinson is active.

Publication


Featured researches published by Paige N. Vinson.


Molecular Pharmacology | 2010

Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity

Alice L. Rodriguez; Mark D. Grier; Carrie K. Jones; Elizabeth J. Herman; Alexander S. Kane; Randy L. Smith; Richard Williams; Ya Zhou; Joy E. Marlo; Emily Days; Tasha N. Blatt; Satyawan Jadhav; Usha N. Menon; Paige N. Vinson; Jerri M. Rook; Shaun R. Stauffer; Colleen M. Niswender; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.


Molecular Pharmacology | 2012

Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

Meredith J. Noetzel; Jerri M. Rook; Paige N. Vinson; Hyekyung P. Cho; Emily Days; Ya Zhou; Alice L. Rodriguez; Hilde Lavreysen; Shaun R. Stauffer; Colleen M. Niswender; Zixiu Xiang; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines. All mGlu5 PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu5 pure PAMs that are devoid of detectable agonist activity and structurally related mGlu5 ago-PAMs that activate mGlu5 alone in cell lines. Studies of mGlu5 PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu5 receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu5 PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu5 PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Neuropharmacology | 2012

Metabotropic glutamate receptors as therapeutic targets for schizophrenia

Paige N. Vinson; P. Jeffrey Conn

Treatment options for schizophrenia that address all symptom categories (positive, negative, and cognitive) are lacking in current therapies for this disorder. Compounds targeting the metabotropic glutamate (mGlu) receptors hold promise as a more comprehensive therapeutic alternative to typical and atypical antipsychotics and may avoid the occurrence of extrapyramidal side effects that accompany these treatments. Activation of the group II mGlu receptors (mGlu(2) and mGlu(3)) and the group I mGlu(5) are hypothesized to normalize the disruption of thalamocortical glutamatergic circuitry that results in abnormal glutamaterigic signaling in the prefrontal cortex (PFC). Agonists of mGlu(2) and mGlu(3) have demonstrated efficacy for the positive symptom group in both animal models and clinical trials with mGlu(2) being the subtype most likely responsible for the therapeutic effect. Limitations in the chemical space tolerated by the orthosteric site of the mGlu receptors has led to the pursuit of compounds that potentiate the receptors response to glutamate by acting at less highly conserved allosteric sites. Several series of selective positive allosteric modulators (PAMs) for mGlu(2) and mGlu(5) have demonstrated efficacy in animal models used for the evaluation of antipsychotic agents. In addition, evidence from animal studies indicates that mGlu(5) PAMs hold promise for the treatment of cognitive deficits that occur in schizophrenia. Hopefully, further optimization of allosteric modulators of mGlu receptors will yield clinical candidates that will allow full evaluation of the potential efficacy of these compounds in the treatment of multiple symptom domains in schizophrenia patients in the near future.


Biological Psychiatry | 2013

Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity

Jerri M. Rook; Meredith J. Noetzel; Wendy A. Pouliot; Thomas M. Bridges; Paige N. Vinson; Hyekyung P. Cho; Ya Zhou; Rocco D. Gogliotti; Jason Manka; Karen J. Gregory; Shaun R. Stauffer; F. Edward Dudek; Zixiu Xiang; Colleen M. Niswender; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; P. Jeffrey Conn

BACKGROUNDnMetabotropic glutamate receptor subtype 5 (mGlu5) activators have emerged as a novel approach to the treatment of schizophrenia. Positive allosteric modulators (PAMs) of mGlu5 have generated tremendous excitement and fueled major drug discovery efforts. Although mGlu5 PAMs have robust efficacy in preclinical models of schizophrenia, preliminary reports suggest that these compounds may induce seizure activity. Prototypical mGlu5 PAMs do not activate mGlu5 directly but selectively potentiate activation of mGlu5 by glutamate. This mechanism may be critical to maintaining normal activity-dependence of mGlu5 activation and achieving optimal in vivo effects.nnnMETHODSnUsing specially engineered mGlu5 cell lines incorporating point mutations within the allosteric and orthosteric binding sites, as well as brain slice electrophysiology and in vivo electroencephalography and behavioral pharmacology, we found that some mGlu5 PAMs have intrinsic allosteric agonist activity in the absence of glutamate.nnnRESULTSnBoth in vitro mutagenesis and in vivo pharmacology studies demonstrate that VU0422465 is an agonist PAM that induces epileptiform activity and behavioral convulsions in rodents. In contrast, VU0361747, an mGlu5 PAMs optimized to eliminate allosteric agonist activity, has robust in vivo efficacy and does not induce adverse effects at doses that yield high brain concentrations.nnnCONCLUSIONSnLoss of the absolute dependence of mGlu5 PAMs on glutamate release for their activity can lead to severe adverse effects. The finding that closely related mGlu5 PAMs can differ in their intrinsic agonist activity provides critical new insights that is essential for advancing these molecules through clinical development for treatment of schizophrenia.


Molecular Pharmacology | 2012

Investigating Metabotropic Glutamate Receptor 5 Allosteric Modulator Cooperativity, Affinity, and Agonism: Enriching Structure-Function Studies and Structure-Activity Relationships

Karen J. Gregory; Meredith J. Noetzel; Jerri M. Rook; Paige N. Vinson; Shaun R. Stauffer; Alice L. Rodriguez; Kyle A. Emmitte; Ya Zhou; Aspen Chun; Andrew S. Felts; Brian A. Chauder; Craig W. Lindsley; Colleen M. Niswender; P. Jeffrey Conn

Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu5) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu5 to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu5-mediated Ca2+ mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities.


Neuron | 2015

Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents.

Jerri M. Rook; Zixiu Xiang; Xiaohui Lv; Ayan Ghoshal; Jonathan W. Dickerson; Thomas M. Bridges; Kari A. Johnson; Daniel J. Foster; Karen J. Gregory; Paige N. Vinson; Analisa D. Thompson; Nellie Byun; Rebekah L. Collier; Michael Bubser; Michael T. Nedelcovych; Robert W. Gould; Shaun R. Stauffer; J. Scott Daniels; Colleen M. Niswender; Hilde Lavreysen; Claire Mackie; Susana Conde-Ceide; Jesús Alcázar; José Manuel Bartolomé-Nebreda; Gregor James Macdonald; John Talpos; Thomas Steckler; Carrie K. Jones; Craig W. Lindsley; P. Jeffrey Conn

Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAMxa0that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq-mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for inxa0vivo efficacy. VIDEO ABSTRACT.


Molecular Pharmacology | 2013

A Novel Metabotropic Glutamate Receptor 5 Positive Allosteric Modulator Acts at a Unique Site and Confers Stimulus Bias to mGlu5 Signaling.

Meredith J. Noetzel; Karen J. Gregory; Paige N. Vinson; Jason Manka; Shaun R. Stauffer; Craig W. Lindsley; Colleen M. Niswender; Zixiu Xiang; P.J. Conn

Metabotropic glutamate receptor 5 (mGlu5) is a target for the treatment of central nervous system (CNS) disorders, such as schizophrenia and Alzheimer’s disease. Furthermore, mGlu5 has been shown to play an important role in hippocampal synaptic plasticity, specifically in long-term depression (LTD) and long-term potentiation (LTP), which is thought to be involved in cognition. Multiple mGlu5-positive allosteric modulators (PAMs) have been developed from a variety of different scaffolds. Previous work has extensively characterized a common allosteric site on mGlu5, termed the MPEP (2-Methyl-6-(phenylethynyl)pyridine) binding site. However, one mGlu5 PAM, CPPHA (N-(4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl)-2-hydroxybenzamide), interacts with a separate allosteric site on mGlu5. Using cell-based assays and brain slice preparations, we characterized the interaction of a potent and efficacious mGlu5 PAM from the CPPHA series termed NCFP (N-(4-chloro-2-((4-fluoro-1,3-dioxoisoindolin-2-yl)methyl)phenyl)picolinamide). NCFP binds to the CPPHA site on mGlu5 and potentiates mGlu5-mediated responses in both recombinant and native systems. However, NCFP provides greater mGlu5 subtype selectivity than does CPPHA, making it more suitable for studies of effects on mGlu5 in CNS preparations. Of interest, NCFP does not potentiate responses involved in hippocampal synaptic plasticity (LTD/LTP), setting it apart from other previously characterized MPEP site PAMs. This suggests that although mGlu5 PAMs may have similar responses in some systems, they can induce differential effects on mGlu5-mediated physiologic responses in the CNS. Such stimulus bias by mGlu5 PAMs may complicate drug discovery efforts but would also allow for specifically tailored therapies, if pharmacological biases can be attributed to different therapeutic outcomes.


Drug Metabolism and Disposition | 2013

Biotransformation of a Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Contributes to Seizure-Like Adverse Events in Rats Involving a Receptor Agonism-Dependent Mechanism

Thomas M. Bridges; Jerri M. Rook; Meredith J. Noetzel; Ryan D. Morrison; Ya Zhou; Rocco D. Gogliotti; Paige N. Vinson; Zixiu Xiang; Carrie K. Jones; Colleen M. Niswender; Craig W. Lindsley; Shaun R. Stauffer; P. Jeffrey Conn; J. Scott Daniels

Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and SAR of centrally active mGlu5 positive allosteric modulators based on an aryl acetylenic bicyclic lactam scaffold

Richard Williams; Jason Manka; Alice L. Rodriguez; Paige N. Vinson; Colleen M. Niswender; C. David Weaver; Carrie K. Jones; P. Jeffrey Conn; Craig W. Lindsley; Shaun R. Stauffer

This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. Molecular switches were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced hyperlocomotion in rats after ip dosing, a preclinical model that shows similar positive effects with known antipsychotic agents.


Bioorganic & Medicinal Chemistry Letters | 2012

Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM.

Douglas J. Sheffler; Cody J. Wenthur; Joshua A. Bruner; Sheridan J. S. Carrington; Paige N. Vinson; Kiran K. Gogi; Anna L. Blobaum; Ryan D. Morrison; Mitchell Vamos; Nicholas D. P. Cosford; Shaun R. Stauffer; J. Scott Daniels; Colleen M. Niswender; P. Jeffrey Conn; Craig W. Lindsley

Herein we report the discovery and SAR of a novel metabotropic glutamate receptor 3 (mGlu(3)) NAM probe (ML289) with 15-fold selectivity versus mGlu(2). The mGlu(3) NAM was discovered via a molecular switch from a closely related, potent mGlu(5) positive allosteric modulator (PAM), VU0092273. This NAM (VU0463597, ML289) displays an IC(50) value of 0.66 μM and is inactive against mGlu(5).

Collaboration


Dive into the Paige N. Vinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig W. Lindsley

Office of Technology Transfer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atin Lamsal

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge