Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Tamura is active.

Publication


Featured researches published by Pamela Tamura.


Plant Physiology | 2006

Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves

Christen M. Buseman; Pamela Tamura; Alexis A. Sparks; Ethan J. Baughman; Sara Maatta; Jian Zhao; Mary R. Roth; Steven Wynn Esch; Jyoti Shah; Todd D. Williams; Ruth Welti

Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.


Plant Physiology | 2012

Direct infusion mass spectrometry of oxylipin-containing Arabidopsis membrane lipids reveals varied patterns in different stress responses

Hieu Sy Vu; Pamela Tamura; Nadezhda A. Galeva; Ratnesh Chaturvedi; Mary R. Roth; Todd D. Williams; Xuemin Wang; Jyoti Shah; Ruth Welti

Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol. The oxidized chains were identified at the level of chemical formula and included C18H27O3 (abbreviated 18:4-O, to indicate four double bond equivalents and one oxygen beyond the carbonyl group), C18H29O3 (18:3-O), C18H31O3 (18:2-O), C18H29O4 (18:3-2O), C18H31O4 (18:2-2O), and C16H23O3 (16:4-O). Mass spectral signals from the polar oxidized lipid (ox-lipid) species were quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P. syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid composition. Additionally, different stresses result in the production of varied amounts, different timing, and different compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stress-specific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.


Lipids | 2008

The identification of mono-, di-, tri-, and tetragalactosyl-diacylglycerols and their natural estolides in oat kernels.

Robert A. Moreau; Douglas C. Doehlert; Ruth Welti; Giorgis Isaac; Mary R. Roth; Pamela Tamura; Alberto Nuñez

Oat kernels were extracted with methanol, and glycolipid-enriched fractions were prepared using silica solid phase extraction. Using direct infusion electrospray ionization (ESI) tandem mass spectrometry (MS), high performance liquid chromatography (HPLC)-ESI-MS, and HPLC-atmospheric pressure chemical ionization (APCI)-MS, we confirmed previous reports that digalactosyldiacylglycerol (DGDG) was the most abundant glycolipid in oat kernels and confirmed a previous report of the presence of a DGDG mono-estolide in oat kernels. In the current study we also identified several additional natural galactolipid estolides: two new DGDG estolides (di- and tri-estolides), two trigalactosyldiacylglycerol (TriGDG) estolides (mono- and di-estolides), and one tetragalactosyldiacylglycerol (TetraGDG) estolide (mono-estolide). The levels of total galactolipid estolides in oat kernels were estimated to be about 29% of the total glycolipid fraction. To our knowledge, this report is the first evidence of natural di- and tri-estolides of polar lipids.


Plant Cell and Environment | 2016

Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations

Sruthi Narayanan; Pamela Tamura; Mary R. Roth; P. V. Vara Prasad; Ruth Welti

Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.


Plant Journal | 2014

Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co‐occurrence analysis

Hieu Sy Vu; Sunitha Shiva; Mary R. Roth; Pamela Tamura; Lianqing Zheng; Maoyin Li; Sujon Sarowar; Samuel Honey; Dedan McEllhiney; Paul Hinkes; Lawrence Seib; Todd D. Williams; Gary L. Gadbury; Xuemin Wang; Jyoti Shah; Ruth Welti

A direct-infusion electrospray ionization triple-quadrupole mass spectrometry method with multiple reaction monitoring (MRM) was employed to measure 264 lipid analytes extracted from leaves of Arabidopsis thaliana subjected to mechanical wounding. The method provided precise measurements with an average coefficient of variation of 6.1%. Lipid classes analyzed comprised galactolipids and phospholipids (including monoacyl molecular species, molecular species with oxidized acyl chains, phosphatidic acids (PAs)), tri- and tetra-galactosyldiacylglycerols (TrGDGs and TeGDGs), head-group-acylated galactolipids, and head-group-acylated phosphatidylglycerol (acPG), sulfoquinovosyldiacylglycerols (SQDGs), sphingolipids, di- and tri-acylglycerols (DAGs and TAGs), and sterol derivatives. Of the 264 lipid analytes, 254 changed significantly in response to wounding. In general, levels of structural lipids decreased, whereas monoacyl molecular species, galactolipids and phosphatidylglycerols (PGs) with oxidized fatty acyl chains, PAs, TrGDGs, TeGDGs, TAGs, head-group-acylated galactolipids, acPG, and some sterol derivatives increased, many transiently. The observed changes are consistent with activation of lipid oxidizing, hydrolyzing, glycosylating, and acylating activities in the wounding response. Correlation analysis of the levels of lipid analytes across individual control and treated plants was used to construct a lipid dendrogram and to define clusters and sub-clusters of lipid analytes, each composed of a group of lipids which occurred in a coordinated manner. Current knowledge of metabolism supports the notion that observed sub-clusters comprise lipids generated by a common enzyme and/or metabolically downstream of a common enzyme. This work demonstrates that co-occurrence analysis, based on correlation of lipid levels among plants, is a powerful approach to defining lipids generated in vivo by a common enzymatic pathway.


Lipids | 2010

Lipid Profiling Reveals Tissue-Specific Differences for Ethanolamide Lipids in Mice Lacking Fatty Acid Amide Hydrolase

Aruna Kilaru; Giorgis Isaac; Pamela Tamura; David Baxter; Scott R. Duncan; Barney J. Venables; Ruth Welti; Peter Koulen; Kent D. Chapman

N-Acylethanolamines (NAE) are fatty acid derivatives, some of which function as endocannabinoids in mammals. NAE metabolism involves common (phosphatidylethanolamines, PEs) and uncommon (N-acylphosphatidylethanolamines, NAPEs) membrane phospholipids. Here we have identified and quantified more than a hundred metabolites in the NAE/endocannabinoid pathway in mouse brain and heart tissues, including many previously unreported molecular species of NAPE. We found that brain tissue of mice lacking fatty acid amide hydrolase (FAAH−/−) had elevated PE and NAPE molecular species in addition to elevated NAEs, suggesting that FAAH activity participates in the overall regulation of this pathway. This perturbation of the NAE pathway in brain was not observed in heart tissue of FAAH−/− mice, indicating that metabolic regulation of the NAE pathway differs in these two organs and the metabolic enzymes that catabolize NAEs are most likely differentially distributed and/or regulated. Targeted lipidomics analysis, like that presented here, will continue to provide important insights into cellular lipid signaling networks.


Lipids | 2012

Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry.

Kathrin Schrick; Sunitha Shiva; James C. Arpin; Nicole Delimont; Giorgis Isaac; Pamela Tamura; Ruth Welti

Establishment of sensitive methods for the detection of cellular sterols and their derivatives is a critical step in developing comprehensive lipidomics technology. We demonstrate that electrospray ionization tandem (triple quadrupole) mass spectrometry (ESI-MS/MS) is an efficient method for monitoring steryl glucosides (SG) and acyl steryl glucosides (ASG). Comparison of analysis of SG and ASG by ESI-MS/MS with analysis by gas chromatography with flame ionization detection (GC–FID) shows that the two methods yield similar molar compositions. These data demonstrate that ESI-MS/MS response per molar amount of sterol conjugate is similar among various molecular species of SG and ASG. Application of ESI-MS/MS to seed samples from wild-type Arabidopsis and a mutant deficient in two UDP-glucose:sterol glucosyltransferases, UGT80A2 and UGT80B1, revealed new details on the composition of sitosteryl, campesteryl and stigmasteryl glucosides and ASG. SG were decreased by 86% in the ugt80A2,B1 double mutant, compared to the wild-type, while ASG were reduced 96%. The results indicate that these glucosyltransferases account for much of the accumulation of the sterol conjugates in wild-type Arabidopsis seeds.


Journal of Lipid Research | 2007

Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry

Steven Wynn Esch; Pamela Tamura; Alexis A. Sparks; Mary R. Roth; Shivakumar P. Devaiah; Ernst Heinz; Xuemin Wang; Todd D. Williams; Ruth Welti

Profiling of leaf extracts from mutants of Arabidopsis with defects in lipid desaturation demonstrates the utility of collision-induced dissociation time-of-flight mass spectrometry (CID-TOF MS) for screening biological samples for fatty acid compositional alterations. CID-TOF MS uses the collision cell of a quadrupole time-of-flight mass spectrometer to simultaneously fragment all of the ions produced by an ionization source. Electrospray ionization CID-TOF MS in the negative mode can be used to analyze fatty acyl anions derived from complex lipids as well as free fatty acids. Although acyl anion yield is shown to be a function of the lipid class and the position on the glycerol backbone, acyl compositional profiles can be determined, and the TOF detector provides resolution of nominally isobaric acyl species in the profiles. Good precision is obtained when data are acquired for ∼1 min per sample.


Frontiers in Plant Science | 2012

Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle

Sara Maatta; Brad Scheu; Mary R. Roth; Pamela Tamura; Maoyin Li; Todd D. Williams; Xuemin Wang; Ruth Welti

Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark–light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.


Planta | 2012

Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines

Aruna Kilaru; Pamela Tamura; Giorgis Isaac; Ruth Welti; Barney J. Venables; Edith Seier; Kent D. Chapman

N-Acylphosphatidylethanolamine (NAPE) and its hydrolysis product, N-acylethanolamine (NAE), are minor but ubiquitous lipids in multicellular eukaryotes. Various physiological processes are severely affected by altering the expression of fatty acid amide hydrolase (FAAH), an NAE-hydrolyzing enzyme. To determine the effect of altered FAAH activity on NAPE molecular species composition, NAE metabolism, and general membrane lipid metabolism, quantitative profiles of NAPEs, NAEs, galactolipids, and major and minor phospholipids for FAAH mutants of Arabidopsis were determined. The NAPE molecular species content was dramatically affected by reduced FAAH activity and elevated NAE content in faah knockouts, increasing by as much as 36-fold, far more than the NAE content, suggesting negative feedback regulation of phospholipase D-mediated NAPE hydrolysis by NAE. The N-acyl composition of NAPE remained similar to that of NAE, suggesting that the NAPE precursor pool largely determines NAE composition. Exogenous NAE 12:0 treatment elevated endogenous polyunsaturated NAE and NAPE levels in seedlings; NAE levels were increased more in faah knockouts than in wild-type or FAAH overexpressors. Treated seedlings with elevated NAE and NAPE levels showed impaired growth and reduced galactolipid synthesis by the “prokaryotic” (i.e., plastidic), but not the “eukaryotic” (i.e., extraplastidic), pathway. Overall, our data provide new insights into the regulation of NAPE–NAE metabolism and coordination of membrane lipid metabolism and seedling development.

Collaboration


Dive into the Pamela Tamura's collaboration.

Top Co-Authors

Avatar

Ruth Welti

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Mary R. Roth

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuemin Wang

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Aruna Kilaru

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hieu Sy Vu

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Jyoti Shah

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge