Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Welti is active.

Publication


Featured researches published by Ruth Welti.


The Arabidopsis Book | 2010

Acyl-Lipid Metabolism

Younghua Li-Beisson; Basil S. Shorrosh; Fred Beisson; Mats X. Andersson; Vincent Arondel; Philip D. Bates; Sébastien Baud; David McK. Bird; Allan DeBono; Timothy P. Durrett; Rochus Franke; Ian Graham; Kenta Katayama; Amélie A. Kelly; Tony R. Larson; Jonathan E. Markham; Martine Miquel; Isabel Molina; Ikuo Nishida; Owen Rowland; Lacey Samuels; Katherine M. Schmid; Hajime Wada; Ruth Welti; Changcheng Xu; Rémi Zallot; John B. Ohlrogge

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.


The Plant Cell | 2009

Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis

Yanyan Zhang; Huiying Zhu; Qun Zhang; Maoyin Li; Min Yan; Rong Wang; Liling Wang; Ruth Welti; Wenhua Zhang; Xuemin Wang

We determined the role of Phospholipase Dα1 (PLDα1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldα1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldα1 cells, whereas PA stimulated NADPH oxidase activity in both genotypes. PA bound to recombinant Arabidopsis NADPH oxidase RbohD (respiratory burst oxidase homolog D) and RbohF. The PA binding motifs were identified, and mutation of the Arg residues 149, 150, 156, and 157 in RbohD resulted in the loss of PA binding and the loss of PA activation of RbohD. The rbohD mutant expressing non-PA-binding RbohD was compromised in ABA-mediated ROS production and stomatal closure. Furthermore, ABA-induced production of nitric oxide (NO) was impaired in pldα1 guard cells. Disruption of PA binding to ABI1 protein phosphatase 2C did not affect ABA-induced production of ROS or NO, but the PA–ABI1 interaction was required for stomatal closure induced by ABA, H2O2, or NO. Thus, PA is as a central lipid signaling molecule that links different components in the ABA signaling network in guard cells.


The Plant Cell | 2004

Biosynthesis of Very-Long-Chain Polyunsaturated Fatty Acids in Transgenic Oilseeds: Constraints on Their Accumulation

Amine Abbadi; Frederic Domergue; Jörg Bauer; Johnathan A. Napier; Ruth Welti; Ulrich Zähringer; Petra Cirpus; Ernst Heinz

ω6- and ω3-polyunsaturated C20 fatty acids represent important components of the human diet. A more regular consumption and an accordingly sustainable source of these compounds are highly desirable. In contrast with the very high levels to which industrial fatty acids have to be enriched in plant oils for competitive use as chemical feedstocks, much lower percentages of very-long-chain polyunsaturated fatty acids (VLCPUFA) in edible plant oils would satisfy nutritional requirements. Seed-specific expression in transgenic tobacco (Nicotiana tabacum) and linseed (Linum usitatissimum) of cDNAs encoding fatty acyl-desaturases and elongases, absent from all agronomically important plants, resulted in the very high accumulation of Δ6-desaturated C18 fatty acids and up to 5% of C20 polyunsaturated fatty acids, including arachidonic and eicosapentaenoic acid. Detailed lipid analyses of developing seeds from transgenic plants were interpretated as indicating that, after desaturation on phosphatidylcholine, Δ6-desaturated products are immediately channeled to the triacylglycerols and effectively bypass the acyl-CoA pool. Thus, the lack of available Δ6-desaturated acyl-CoA substrates in the acyl-CoA pool limits the synthesis of elongated C20 fatty acids and disrupts the alternating sequence of lipid-linked desaturations and acyl-CoA dependent elongations. As well as the successful production of VLCPUFA in transgenic oilseeds and the identification of constraints on their accumulation, our results indicate alternative strategies to circumvent this bottleneck.


Nature Protocols | 2010

Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry

Xiangqing Pan; Ruth Welti; Xuemin Wang

The ability to measure plant hormones quantitatively is important as plant hormones regulate plant growth, development and response to biotic and abiotic cues. In this protocol, we describe the quantitative analysis of major plant hormones from crude plant extracts. Plant hormones are determined using reverse-phase liquid chromatography–tandem mass spectrometry with multiple reaction monitoring. The method provides quantification of most major plant hormones in a single run from 50 mg of fresh plant tissue. Extraction and quantitative analysis of 40 samples takes 2–3 d.


Nature Biotechnology | 2004

The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana

Weiqi Li; Maoyin Li; Wenhua Zhang; Ruth Welti; Xuemin Wang

Freezing injury is a major environmental limitation on the productivity and geographical distribution of plants. Here we show that freezing tolerance can be manipulated in Arabidopsis thaliana by genetic alteration of the gene encoding phospholipase Dδ (PLDδ), which is involved in membrane lipid hydrolysis and cell signaling. Genetic knockout of the plasma membrane–associated PLDδ rendered A. thaliana plants more sensitive to freezing, whereas overexpression of PLDδ increased freezing tolerance. Lipid profiling revealed that PLDδ contributed approximately 20% of the phosphatidic acid produced in wild-type plants during freezing, and overexpression of PLDδ increased the production of phosphatidic acid species. The PLDδ alterations did not affect the expression of the cold-regulated genes COR47 or COR78 or alter cold-induced increases in proline or soluble sugars, suggesting that the PLD pathway is a unique determinant of the response to freezing and may present opportunities for improving plant freezing tolerance.


The Plant Cell | 2000

Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in arabidopsis.

Cunxi Wang; Christopher A. Zien; Meshack M. Afitlhile; Ruth Welti; David F. Hildebrand; Xuemin Wang

Multiple forms of phospholipase D (PLD) were activated in response to wounding, and the expressions of PLDα, PLDβ, and PLDγ differed in wounded Arabidopsis leaves. Antisense abrogation of the common plant PLD, PLDα, decreased the wound induction of phosphatidic acid, jasmonic acid (JA), and a JA-regulated gene for vegetative storage protein. Examination of the genes involved in the initial steps of oxylipin synthesis revealed that abrogation of the PLDα attenuated the wound-induced expression of lipoxygenase 2 (LOX2) but had no effect on allene oxide synthase (AOS) or hydroperoxide lyase in wounded leaves. The systemic induction of LOX2, AOS, and vegetative storage protein was lower in the PLDα-suppressed plants than in wild-type plants, with AOS exhibiting a distinct pattern. These results indicate that activation of PLD mediates wound induction of JA and that LOX2 is probably a downstream target through which PLD promotes the production of JA.


The Plant Cell | 2003

The Oleate-Stimulated Phospholipase D, PLDδ, and Phosphatidic Acid Decrease H2O2-Induced Cell Death in Arabidopsis

Wenhua Zhang; Cunxi Wang; Chunbo Qin; Tara Wood; Gudrun Olafsdottir; Ruth Welti; Xuemin Wang

Hydrolysis of common membrane phospholipids occurs in response to various environmental stresses, but the control and cellular function of this hydrolysis are not fully understood. Hydrogen peroxide (H2O2) is a pivotal signaling molecule involved in various stress responses. Here, we show that the plasma membrane–bound phospholipase D, PLDδ, is activated in response to H2O2 and that the resulting phosphatidic acid (PA) functions to decrease H2O2-promoted programmed cell death. The Arabidopsis genome has 12 PLD genes, and knockout of PLDδ abolishes specifically the oleate-stimulated PLD activity. H2O2 treatment of Arabidopsis cells activates PLD enzyme activity, and ablation of PLDδ abolishes that activation. PLDδ-null cells display increased sensitivity to H2O2-induced cell death. The addition of PA to PLDδ-null cells mitigates the H2O2 effect, whereas suppression of the H2O2-induced PA formation in wild-type cells increases the effect. PLDδ-ablated plants exhibit increased susceptibility to stress. These results demonstrate that activation of oleate-stimulated PLDδ constitutes an important step in the plant response to H2O2 and increasing plant stress tolerance.


The Plant Cell | 2004

The Arabidopsis thaliana Dihydroxyacetone Phosphate Reductase Gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 Is Required for Glycerolipid Metabolism and for the Activation of Systemic Acquired Resistance

Ashis Nandi; Ruth Welti; Jyoti Shah

Systemic acquired resistance (SAR) is a broad-spectrum resistance mechanism in plants that is activated in naive organs after exposure of another organ to a necrotizing pathogen. The organs manifesting SAR exhibit an increase in levels of salicylic acid (SA) and expression of the PATHOGENESIS-RELATED1 (PR1) gene. SA signaling is required for the manifestation of SAR. We demonstrate here that the Arabidopsis thaliana suppressor of fatty acid desaturase deficiency1 (sfd1) mutation compromises the SAR-conferred enhanced resistance to Pseudomonas syringae pv maculicola. In addition, the sfd1 mutation diminished the SAR-associated accumulation of elevated levels of SA and PR1 gene transcript in the distal leaves of plants previously exposed to an avirulent pathogen. However, the basal resistance to virulent and avirulent strains of P. syringae and the accumulation of elevated levels of SA and PR1 gene transcript in the pathogen-inoculated leaves of sfd1 were not compromised. Furthermore, the application of the SA functional analog benzothiadiazole enhanced disease resistance in the sfd1 mutant plants. SFD1 encodes a putative dihydroxyacetone phosphate (DHAP) reductase, which complemented the glycerol-3-phosphate auxotrophy of the DHAP reductase–deficient Escherichia coli gpsA mutant. Plastid glycerolipid composition was altered in the sfd1 mutant plant, suggesting that SFD1 is involved in lipid metabolism and that an SFD1 product lipid(s) is important for the activation of SAR.


Chemistry and Physics of Lipids | 1994

LIPID DOMAINS IN MODEL AND BIOLOGICAL MEMBRANES

Ruth Welti; Michael Glaser

Lipid domains that occur within biological of model membranes encompass a variety of structures with very different lifetimes. The separation of membrane lipids into compositional domains can be due to lateral phase separation, immiscibility within a single phase, or interaction of lipids with integral or peripheral proteins. Lipid domains can affect the extent and rate of reactions in the membrane and provide sites for the activity of specialized proteins. Domains are likely to be involved in the process of lipid sorting to various cellular membranes, as well as in other processes which involve membrane budding or invagination.


Phytochemistry | 2008

Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry

Xiangqing Pan; Ruth Welti; Xuemin Wang

A rapid and sensitive method was developed for simultaneous quantification of multiple classes of phytohormones and some related metabolites in crude plant extracts without purification or derivatization. High-performance liquid chromatography and electrospray ionization-tandem mass spectrometry with multiple reaction monitoring were used to quantify auxins, cytokinins, abscisic acid, gibberellins, jasmonates, salicylates, and a number of related metabolites in crude plant extracts. The technology was applied to analyze biotic and abiotic stress-induced changes of phytohormones in Arabidopsis tissues, starting with 50-100mg fresh tissue. Biotic and/or abiotic stresses were shown to differentially affect levels of salicylic acid, jasmonic acid, indole-3-acetic acid, and benzoic acid, in comparison to their methyl esters. Compared with previous methods, sample preparation time and amount of sample required for analysis of phytohormones are reduced, and more classes of hormones are quantitatively profiled. Structurally diverse compounds from complicated biological matrices are determined with high selectivity and sensitivity.

Collaboration


Dive into the Ruth Welti's collaboration.

Top Co-Authors

Avatar

Mary R. Roth

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Xuemin Wang

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Maoyin Li

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyoti Shah

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hieu Sy Vu

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Kent D. Chapman

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge