Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Panna Tandon is active.

Publication


Featured researches published by Panna Tandon.


Developmental Biology | 2017

Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling

Panna Tandon; Frank L. Conlon; J. David Furlow; Marko E. Horb

The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.


Development | 2013

Tcf21 regulates the specification and maturation of proepicardial cells

Panna Tandon; Yana V. Miteva; Lauren M. Kuchenbrod; Ileana M. Cristea; Frank L. Conlon

The epicardium is a mesothelial cell layer essential for vertebrate heart development and pertinent for cardiac repair post-injury in the adult. The epicardium initially forms from a dynamic precursor structure, the proepicardial organ, from which cells migrate onto the heart surface. During the initial stage of epicardial development crucial epicardial-derived cell lineages are thought to be determined. Here, we define an essential requirement for transcription factor Tcf21 during early stages of epicardial development in Xenopus, and show that depletion of Tcf21 results in a disruption in proepicardial cell specification and failure to form a mature epithelial epicardium. Using a mass spectrometry-based approach we defined Tcf21 interactions and established its association with proteins that function as transcriptional co-repressors. Furthermore, using an in vivo systems-based approach, we identified a panel of previously unreported proepicardial precursor genes that are persistently expressed in the epicardial layer upon Tcf21 depletion, thereby confirming a primary role for Tcf21 in the correct determination of the proepicardial lineage. Collectively, these studies lead us to propose that Tcf21 functions as a transcriptional repressor to regulate proepicardial cell specification and the correct formation of a mature epithelial epicardium.


Birth Defects Research Part A-clinical and Molecular Teratology | 2011

Xenopus: An emerging model for studying congenital heart disease

Erin Kaltenbrun; Panna Tandon; Nirav M. Amin; Lauren Waldron; Chris Showell; Frank L. Conlon

Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.


Development | 2013

Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion

James E. N. Minchin; Victoria C. Williams; Yaniv Hinits; Siew Hui Low; Panna Tandon; Chen-Ming Fan; John F. Rawls; Simon M. Hughes

Striated muscles that enable mouth opening and swallowing during feeding are essential for efficient energy acquisition, and are likely to have played a fundamental role in the success of early jawed vertebrates. The developmental origins and genetic requirements of these muscles are uncertain. Here, we determine by indelible lineage tracing in mouse that fibres of sternohyoid muscle (SHM), which is essential for mouth opening during feeding, and oesophageal striated muscle (OSM), which is crucial for voluntary swallowing, arise from Pax3-expressing somite cells. In vivo Kaede lineage tracing in zebrafish reveals the migratory route of cells from the anteriormost somites to OSM and SHM destinations. Expression of pax3b, a zebrafish duplicate of Pax3, is restricted to the hypaxial region of anterior somites that generate migratory muscle precursors (MMPs), suggesting that Pax3b plays a role in generating OSM and SHM. Indeed, loss of pax3b function led to defective MMP migration and OSM formation, disorganised SHM differentiation, and inefficient ingestion and swallowing of microspheres. Together, our data demonstrate Pax3-expressing somite cells as a source of OSM and SHM fibres, and highlight a conserved role of Pax3 genes in the genesis of these feeding muscles of vertebrates.


Methods of Molecular Biology | 2012

Morpholino Injection in Xenopus

Panna Tandon; Chris Showell; Kathleen S. Christine; Frank L. Conlon

The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that genes function and advise on what control experiments should be undertaken to verify their efficacy.


Methods | 2014

RNA-seq in the tetraploid Xenopus laevis enables genome-wide insight in a classic developmental biology model organism

Nirav M. Amin; Panna Tandon; Erin Osborne Nishimura; Frank L. Conlon

Advances in sequencing technology have significantly advanced the landscape of developmental biology research. The dissection of genetic networks in model and non-model organisms has been greatly enhanced with high-throughput sequencing technologies. RNA-seq has revolutionized the ability to perform developmental biology research in organisms without a published genome sequence. Here, we describe a protocol for developmental biologists to perform RNA-seq on dissected tissue or whole embryos. We start with the isolation of RNA and generation of sequencing libraries. We further show how to interpret and analyze the large amount of sequencing data that is generated in RNA-seq. We explore the abilities to examine differential expression, gene duplication, transcript assembly, alternative splicing and SNP discovery. For the purposes of this article, we use Xenopus laevis as the model organism to discuss uses of RNA-seq in an organism without a fully annotated genome sequence.


PLOS ONE | 2015

A Distinct Mechanism of Vascular Lumen Formation in Xenopus Requires EGFL7

Marta S. Charpentier; Panna Tandon; Claire E. Trincot; Elitza K. Koutleva; Frank L. Conlon

During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1. The emergence of vascular lumens is characterized by elongation of endothelial cell shape, reorganization of junctions away from the cord center to the periphery of the vessel, and onset of Claudin-5 expression within tight junctions. Furthermore, unlike most vertebrate vessels that exhibit specialized apical and basal domains, we show that early Xenopus vessels are not polarized. Moreover, we demonstrate that in embryos depleted of the extracellular matrix factor Epidermal Growth Factor-Like Domain 7 (EGFL7), an evolutionarily conserved factor associated with vertebrate vessel development, vascular lumens fail to form. While Claudin-5 localizes to endothelial tight junctions of EGFL7-depleted embryos in a timely manner, endothelial cells of the aorta and veins fail to undergo appropriate cell shape changes or clear junctions from the cell-cell contact. Taken together, we demonstrate for the first time the mechanisms by which lumens are generated within the major vessels in Xenopus and implicate EGFL7 in modulating cell shape and cell-cell junctions to drive proper lumen morphogenesis.


Genetics | 2016

Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation.

Jessica Sullivan-Brown; Panna Tandon; Kim E. Bird; Daniel J. Dickinson; Sophia C. Tintori; Jennifer K. Heppert; Joy H. Meserve; Kathryn P. Trogden; Sara K. Orlowski; Frank L. Conlon; Bob Goldstein

Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells’ apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.


Development | 2016

The LhX9-integrin pathway is essential for positioning of the proepicardial organ

Panna Tandon; Caralynn M. Wilczewski; Clara E. Williams; Frank L. Conlon

The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation. Summary: In Xenopus, Lhx9, a LIM homeodomain protein, acts upstream of integrin-paxillin signaling to control positioning and migration of proepicardial cells, and subsequent epicardium formation.


Small GTPases | 2012

ROCKs cause SHP-wrecks and broken hearts.

Panna Tandon; Frank L. Conlon; Joan M. Taylor

During embryogenesis, the heart is one of the first organs to develop. Its formation requires a complex combination of migration of cardiac precursors to the ventral midline coupled with the fusion of these cardiogenic fields and subsequent cellular reorganization to form a linear heart tube. A finely controlled choreography of cell proliferation, adhesion, contraction and movement drives the heart tube to loop and subsequently septate to form the four-chambered mammalian heart we are familiar with. Defining how this plethora of cellular processes is controlled both spatially and temporally is a scientific feat that has fascinated researchers for decades. Unfortunately, the complex nature of this organ’s development also makes it a prime target for mutation-induced malformation, as evidenced by the multitude of prevalent congenital heart disorders identified that afflict up to 1% of the population.

Collaboration


Dive into the Panna Tandon's collaboration.

Top Co-Authors

Avatar

Frank L. Conlon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chris Showell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joan M. Taylor

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nirav M. Amin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bob Goldstein

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Caralynn M. Wilczewski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chen-Ming Fan

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Claire E. Trincot

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Clara E. Williams

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Dickinson

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge