Paola Berto
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Berto.
Journal of Biological Chemistry | 2011
Laura Cendron; Paola Berto; Sarah D'Adamo; Francesca Vallese; Chiara Govoni; Matthew C. Posewitz; Giorgio M. Giacometti; Paola Costantini; Giuseppe Zanotti
Background: HydF is a GTPase essential for maturation of [FeFe]-hydrogenase. Results: The first crystal structure of HydF has been determined. Conclusion: The protein monomer comprises a GTP-binding domain, a dimerization domain, and a metal-cluster binding domain. Two monomers dimerize, and two dimers can aggregate to a tetramer. Significance: The crystal structure of the latter furnishes several clues about the events necessary for cluster generation. [FeFe]-hydrogenases catalyze the reversible production of H2 in some bacteria and unicellular eukaryotes. These enzymes require ancillary proteins to assemble the unique active site H-cluster, a complex structure composed of a 2Fe center bridged to a [4Fe-4S] cubane. The first crystal structure of a key factor in the maturation process, HydF, has been determined at 3 Å resolution. The protein monomer present in the asymmetric unit of the crystal comprises three domains: a GTP-binding domain, a dimerization domain, and a metal cluster-binding domain, all characterized by similar folding motifs. Two monomers dimerize, giving rise to a stable dimer, held together mainly by the formation of a continuous β-sheet comprising eight β-strands from two monomers. Moreover, in the structure presented, two dimers aggregate to form a supramolecular organization that represents an inactivated form of the HydF maturase. The crystal structure of the latter furnishes several clues about the events necessary for cluster generation/transfer and provides an excellent model to begin elucidating the structure/function of HydF in [FeFe]-hydrogenase maturation.
Biochimica et Biophysica Acta | 2012
Paola Berto; Marilena Di Valentin; Laura Cendron; Francesca Vallese; Marco Albertini; Enrico Salvadori; Giorgio M. Giacometti; Donatella Carbonera; Paola Costantini
[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe-4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe-4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron-sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx(46-53)HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.
Journal of Biological Chemistry | 2012
Francesca Vallese; Paola Berto; Maria Ruzzene; Laura Cendron; Stefania Sarno; Edith De Rosa; Giorgio M. Giacometti; Paola Costantini
Background: Activation of [FeFe]-hydrogenases requires coordinated interactions between the maturases HydE, HydF, and HydG. Results: We characterized the interactions of HydF with HydE, HydG, and the hydrogenase that occur independently of the HydF GTPase activity, related to the dissociation step. Conclusion: Additional insights into the [FeFe]-hydrogenases maturation process are provided. Significance: This study contributes to a more detailed picture of how [FeFe]-hydrogenases are assembled. [FeFe]-hydrogenases are iron-sulfur proteins characterized by a complex active site, the H-cluster, whose assembly requires three conserved maturases. HydE and HydG are radical S-adenosylmethionine enzymes that chemically modify a H-cluster precursor on HydF, a GTPase with a dual role of scaffold on which this precursor is synthesized, and carrier to transfer it to the hydrogenase. Coordinate structural and functional relationships between HydF and the two other maturases are crucial for the H-cluster assembly. However, to date only qualitative analysis of this protein network have been provided. In this work we showed that the interactions of HydE and HydG with HydF are distinct events, likely occurring in a precise functional order driven by different kinetic properties, independently of the HydF GTPase activity, which is instead involved in the dissociation of the maturases from the scaffold. We also found that HydF is able to interact with the hydrogenase only when co-expressed with the two other maturases, indicating that under these conditions it harbors per se all the structural elements needed to transfer the H-cluster precursor, thus completing the maturation process. These results open new working perspectives aimed at improving the knowledge of how these complex metalloenzymes are biosynthesized.
Biochemical and Biophysical Research Communications | 2011
Paola Berto; Sarah D’Adamo; Elisabetta Bergantino; Francesca Vallese; Giorgio M. Giacometti; Paola Costantini
[FeFe]-hydrogenases have been claimed as the most promising catalysts of hydrogen bioproduction and several efforts have been accomplished to express and purify them. However, previous attemps to obtain a functional recombinant [FeFe]-hydrogenase in heterologous systems such as Escherichia coli failed due to the lack of the specific maturation proteins driving the assembly of its complex active site. The unique exception is that of [FeFe]-hydrogenase from Clostridium pasteurianum that has been expressed in active form in the cyanobacterium Synechococcus PCC 7942, which holds a bidirectional [NiFe]-hydrogenase with a well characterized maturation system, suggesting that the latter is flexible enough to drive the synthesis of a [FeFe]-enzyme. However, the capability of cyanobacteria to correctly fold a [FeFe]-hydrogenase in the absence of its auxiliary maturation proteins is a debated question. In this work, we expressed the [FeFe]-hydrogenase from Chlamydomonas reinhardtii as an active enzyme in the cyanobacterium Synechocystis sp. PCC 6803. Our results, using a different experimental system, confirm that cyanobacteria are able to express a functional [FeFe]-hydrogenase even in the absence of additional chaperones.
FEBS Journal | 2014
Oneda Leka; Francesca Vallese; Marco Pirazzini; Paola Berto; Cesare Montecucco; Giuseppe Zanotti
Diphtheria toxin (DT), the etiological agent of the homonymous disease, like other bacterial toxins, has to undergo a dramatic structural change in order to be internalized into the cytosol, where it finally performs its function. The molecular mechanism of toxin transit across the membrane is not well known, but the available experimental evidence indicates that one of the three domains of the toxin, called the central α‐helical domain, inserts into the lipid bilayer, so favoring the translocation of the catalytic domain. This process is driven by the acidic pH of the endosomal lumen. Here, we describe the crystal structure of DT grown at acidic pH in the presence of bicelles. We were unable to freeze the moment of DT insertion into the lipid bilayer, but our crystal structure indicates that the low pH causes the unfolding of the TH2, TH3 and TH4 α‐helices. This event gives rise to the exposure of a hydrophobic surface that includes the TH5 and TH8 α‐helices, and the loop region connecting the TH8 and TH9 α‐helices. Their exposure is probably favored by the presence of lipid bilayers in the crystallization solution, and they appear to be ready to insert into the membrane.
Topics in Catalysis | 2015
Marco Albertini; Laura Galazzo; Lorenzo Maso; Francesca Vallese; Paola Berto; Edith De Rosa; Marilena Di Valentin; Paola Costantini; Donatella Carbonera
The catalytic site of [FeFe]-hydrogenase, the “H-cluster”, composed by a [4Fe–4S] unit connected by a cysteinyl residue to a [2Fe] center coordinated by three CO, two CN− and a bridging dithiolate, is assembled in a complex maturation pathway, at present not fully characterized, involving three conserved proteins, HydG, HydE and HydF. In this contribution we review our studies on HydF, a protein which acts as scaffold and carrier for the [2Fe] unit of the H-cluster. HydF is a complex enzyme which contains one [4Fe–4S] cluster binding site, with three conserved cysteine residues and a non-Cys ligand. We have exploited EPR, HYSCORE and PELDOR spectroscopies to get insight into the structure and chemical role of HydF. On the basis of the results we discuss the possibility that the non-Cys ligated Fe atom of the [4Fe–4S] cluster, is the site where the [2Fe] subcluster precursor is anchored and finally processed to be delivered to the hydrogenase (HydA). Our PELDOR experiments on the isolated GTPase domain of HydF, have also suggested that interactions with HydG and HydE proteins may be regulated by the binding of the nucleotide.
Scientific Reports | 2015
Edith De Rosa; Vanessa Checchetto; Cinzia Franchin; Elisabetta Bergantino; Paola Berto; Ildikò Szabò; Giorgio M. Giacometti; Giorgio Arrigoni; Paola Costantini
The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.
Scientific Reports | 2017
Pascal Albanese; Roberto Melero; Benjamin D. Engel; Alessandro Grinzato; Paola Berto; Marcello Manfredi; Angelica Chiodoni; Javier Vargas; Carlos Oscar S. Sorzano; Emilio Marengo; Guido Saracco; Giuseppe Zanotti; J.M. Carazo; Cristina Pagliano
In higher plant thylakoids, the heterogeneous distribution of photosynthetic protein complexes is a determinant for the formation of grana, stacks of membrane discs that are densely populated with Photosystem II (PSII) and its light harvesting complex (LHCII). PSII associates with LHCII to form the PSII-LHCII supercomplex, a crucial component for solar energy conversion. Here, we report a biochemical, structural and functional characterization of pairs of PSII-LHCII supercomplexes, which were isolated under physiologically-relevant cation concentrations. Using single-particle cryo-electron microscopy, we determined the three-dimensional structure of paired C2S2M PSII-LHCII supercomplexes at 14 Å resolution. The two supercomplexes interact on their stromal sides through a specific overlap between apposing LHCII trimers and via physical connections that span the stromal gap, one of which is likely formed by interactions between the N-terminal loops of two Lhcb4 monomeric LHCII subunits. Fast chlorophyll fluorescence induction analysis showed that paired PSII-LHCII supercomplexes are energetically coupled. Molecular dynamics simulations revealed that additional flexible physical connections may form between the apposing LHCII trimers of paired PSII-LHCII supercomplexes in appressed thylakoid membranes. Our findings provide new insights into how interactions between pairs of PSII-LHCII supercomplexes can link adjacent thylakoids to mediate the stacking of grana membranes.
Biochimica et Biophysica Acta | 2018
Domenico Cieri; Mattia Vicario; Francesca Vallese; Beatrice D'Orsi; Paola Berto; Alessandro Grinzato; Cristina Catoni; Diego De Stefani; Rosario Rizzuto; Marisa Brini; Tito Calì
Intracellular neurofibrillary tangles (NFT) composed by tau and extracellular amyloid beta (Aβ) plaques accumulate in Alzheimers disease (AD) and contribute to neuronal dysfunction. Mitochondrial dysfunction and neurodegeneration are increasingly considered two faces of the same coin and an early pathological event in AD. Compelling evidence indicates that tau and mitochondria are closely linked and suggests that tau-dependent modulation of mitochondrial functions might be a trigger for the neurodegeneration process; however, whether this occurs either directly or indirectly is not clear. Furthermore, whether tau influences cellular Ca2+ handling and ER-mitochondria cross-talk is yet to be explored. Here, by focusing on wt tau, either full-length (2N4R) or the caspase 3-cleaved form truncated at the C-terminus (2N4RΔC20), we examined the above-mentioned aspects. Using new genetically encoded split-GFP-based tools and organelle-targeted aequorin probes, we assessed: i) tau distribution within the mitochondrial sub-compartments; ii) the effect of tau on the short- (8-10 nm) and the long- (40-50 nm) range ER-mitochondria interactions; and iii) the effect of tau on cytosolic, ER and mitochondrial Ca2+ homeostasis. Our results indicate that a fraction of tau is found at the outer mitochondrial membrane (OMM) and within the inner mitochondrial space (IMS), suggesting a potential tau-dependent regulation of mitochondrial functions. The ER Ca2+ content and the short-range ER-mitochondria interactions were selectively affected by the expression of the caspase 3-cleaved 2N4RΔC20 tau, indicating that Ca2+ mis-handling and defects in the ER-mitochondria communications might be an important pathological event in tau-related dysfunction and thereby contributing to neurodegeneration. Finally, our data provide new insights into the molecular mechanisms underlying tauopathies.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015
Maria Elena M. E. Compostella; Paola Berto; Francesca Vallese; Giuseppe Zanotti
The crystal structure of α-carbonic anhydrase, an enzyme present in the periplasm of Helicobacter pylori, a bacterium that affects humans and that is responsible for several gastric pathologies, is described. Two enzyme monomers are present in the asymmetric unit of the monoclinic space group P21, forming a dimer in the crystal. Despite the similarity of the enzyme structure to those of orthologues from other species, the H. pylori protein has adopted peculiar features in order to allow the bacterium to survive in the difficult environment of the human stomach. In particular, the crystal structure shows how the bacterium has corrected for the mutation of an essential amino acid important for catalysis using a negative ion from the medium and how it localizes close to the inner membrane in the periplasm. Since carbonic anhydrase is essential for the bacterial colonization of the host, it is a potential target for antibiotic drugs. The definition of the shape of the active-site entrance and cavity constitutes a basis for the design of specific inhibitors.