Paolo Flace
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Flace.
Histochemical Journal | 2002
Mariella Errede; Vincenzo Benagiano; Francesco Girolamo; Paolo Flace; Mirella Bertossi; Luisa Roncali; Daniela Virgintino
Connexin43 (Cx43), the main protein constituting the gap junctions between astrocytes, has previously been demonstrated in endothelial cells of somatic vessels where the intercellular coupling that it provides plays a role in endothelial proliferation and migration. In this study, Cx43 expression was analysed in human brain microvascular endothelial cells of the cortical plate of 18-week foetal telencephalon, in adult cerebral cortex and glioma (astrocytomas). The study was carried out by immunocytochemistry utilizing a Cx43 monoclonal antibody and a polyclonal antibody anti-GLUT1 (glucose transporter isoform 1) to identify the endothelial cells and to localize Cx43. Endothelial Cx43 is differently expressed in the cortical plate, cerebral cortex and astrocytoma. Within the cortical plate and tumour, Cx43 is highly expressed in microvascular endothelial cells whereas it is virtually absent in the cerebral cortex microvessels. The high expression of the gap junction protein in developing brain, as well as in brain tumours, may be related to the growth status of the microvessels during brain and tumour angiogenesis. The lack of endothelial Cx43 in the cerebral cortex is in agreement with the characteristics of the mature brain endothelial cells that are sealed by tight junctions. In conclusion, the results indicate that endothelial Cx43 expression is developmentally regulated in the normal human brain and suggest that it is controlled by the microenvironment in both normal and tumour-related conditions.
Neuroscience | 2005
Vincenzo Benagiano; Loredana Lorusso; A. Coluccia; A. Tarullo; Paolo Flace; Francesco Girolamo; L. Bosco; Raffaele Cagiano; Glauco Ambrosi
Glutamic acid decarboxylase and GABA immunoreactivities were qualitatively and quantitatively evaluated in the cerebellar cortex of adult rats prenatally exposed to a low concentration of carbon monoxide (75 parts per million). Carbon monoxide-exposed and control rats were perfused with modified Bouins fluid and their cerebella were embedded in paraffin. Sections from the vermis of each cerebellum were stained with Toluidine Blue or assayed with anti-glutamic acid decarboxylase 65/67 or with anti-GABA antisera. In the Toluidine Blue-stained sections, no differences were observed in the microscopic structure of the cerebellar cortex between carbon monoxide-exposed rats and controls. The distribution patterns of glutamic acid decarboxylase and GABA immunoreactivities in the cerebellar cortex of the treated animals were qualitatively comparable to those of the controls, and in accordance with previous descriptions of glutamic acid decarboxylase and GABA immunoreactivities in the rat cerebellar cortex. However, quantitative analyses demonstrated a significant reduction of immunoreactivities to both substances in the exposed rats in comparison with the controls. The reduction regarded: in the molecular layer, the number of glutamic acid decarboxylase/GABA-immunoreactive neuronal bodies and of axon terminals and the area they covered; in the Purkinje neuron layer, the number and the area covered by glutamic acid decarboxylase/GABA immunoreactive axon terminals. The differences detected in the prenatally exposed adult rats could be due to carbon monoxide-induced impairment of the differentiation of cerebellar GABA synthesizing neurons. A consequently diminished synthesis of GABA might account for some behavioral disorders detected in adult rats submitted to the same experimental procedure.
Anatomy and Embryology | 2004
Paolo Flace; Vincenzo Benagiano; Loredana Lorusso; Francesco Girolamo; Anna Rizzi; Daniela Virgintino; Luisa Roncali; Glauco Ambrosi
‘Non-traditional’ large neurons of the granular layer of the cerebellar cortex include all its large neuronal types, except the Golgi neuron, which is instead one of the five ‘classic’ types of corticocerebellar neurons. The morphological, chemical and functional characteristics of the ‘non-traditional’ large neurons have not been entirely ascertained. The aim of this study was to ascertain whether morphological evidence can be provided of GABA synthesis within the ‘non-traditional’ large neurons of the human cerebellar cortex by means of immunocytochemistry for glutamic acid decarboxylase (GAD). Fragments of postmortem cerebellar cortex of various lobules from the hemispheres and vermis were studied. Immunoreactions revealed large neurons distributed throughout the granular layer in all lobules examined. They were discriminated by analyzing the morphological features of their bodies and processes and were identified as Golgi neurons and as some ‘non-traditional’ types, such as the candelabrum, Lugaro and synarmotic neurons. In addition, immunoreactive large neurons, with their bodies and processes closely adjacent to microvessels, were observed throughout the layer: these perivascular neurons could represent a new type of ‘non-traditional’ neuron of the cerebellar cortex. This study supplies the first indication that in the human cerebellar cortex some types of ‘non-traditional’ large neurons are GAD-immunoreactive, in addition to those neurons already known to be GABAergic (i.e., stellate, basket, Purkinje and Golgi neurons). These morphological data further point out possible functional roles for GABA as a neurotransmitter/neuromodulator in intrinsic, associative and projective circuits of the cerebellar cortex.
Histochemical Journal | 2000
Vincenzo Benagiano; Daniela Virgintino; Anna Rizzi; Paolo Flace; Vito Troccoli; Joachim Bormann; Paul Monaghan; David Robertson; Luisa Roncali; Glauco Ambrosi
The distribution of γ-aminobutyric acid (GABA) in the human cerebellar cortex was studied using immunohistochemistry for glutamic acid decarboxylase (GAD), the enzyme that catalyses GABA synthesis. Observations by light microscopy revealed, in all layers of the cerebellar cortex, strong, punctate positivity for GAD, related to putative GABAergic nerve terminals, as well as a diffuse cytoplasmic immunoreactivity within neuronal cell bodies. GAD-positive nerve terminals were found in close relationship with the walls of the cerebellar cortex microvessels. Observations by electron microscopy revealed positive nerve terminals in contact with the astrocyte perivascular sheath of capillaries. GAD immunoreactivity was also detected within astroglial perivascular endfeet and endothelial cells. The findings provide further insights into the GABAergic synapses of the circuitry of the human cerebellar cortex. The detection of ‘vascular’ GAD immunoreactivities suggests that GABAergic mechanisms may regulate cerebellar microvessel function.
BMC Neuroscience | 2011
Vincenzo Benagiano; Loredana Lorusso; Paolo Flace; Francesco Girolamo; Anna Rizzi; Lorenzo Bosco; Raffaele Cagiano; Beatrice Nico; Domenico Ribatti; Glauco Ambrosi
BackgroundThe aim of this study was to assess the distribution of key SNARE proteins in glutamatergic and GABAergic synapses of the adult rat cerebellar cortex using light microscopy immunohistochemical techniques. Analysis was made of co-localizations of vGluT-1 and vGluT-2, vesicular transporters of glutamate and markers of glutamatergic synapses, or GAD, the GABA synthetic enzyme and marker of GABAergic synapses, with VAMP-2, SNAP-25A/B and syntaxin-1.ResultsThe examined SNARE proteins were found to be diffusely expressed in glutamatergic synapses, whereas they were rarely observed in GABAergic synapses. However, among glutamatergic synapses, subpopulations which did not contain VAMP-2, SNAP-25A/B and syntaxin-1 were detected. They included virtually all the synapses established by terminals of climbing fibres (immunoreactive for vGluT-2) and some synapses established by terminals of parallel and mossy fibres (immunoreactive for vGluT-1, and for vGluT-1 and 2, respectively). The only GABA synapses expressing the SNARE proteins studied were the synapses established by axon terminals of basket neurons.ConclusionThe present study supplies a detailed morphological description of VAMP-2, SNAP-25A/B and syntaxin-1 in the different types of glutamatergic and GABAergic synapses of the rat cerebellar cortex. The examined SNARE proteins characterize most of glutamatergic synapses and only one type of GABAergic synapses. In the subpopulations of glutamatergic and GABAergic synapses lacking the SNARE protein isoforms examined, alternative mechanisms for regulating trafficking of synaptic vesicles may be hypothesized, possibly mediated by different isoforms or homologous proteins.
Histochemical Journal | 2001
Vincenzo Benagiano; Luisa Roncali; Daniela Virgintino; Paolo Flace; Mariella Errede; Anna Rizzi; Francesco Girolamo; David Robertson; Joachim Bormann; Glauco Ambrosi
The distribution of γ-aminobutyric acid (GABA) in surgical samples of human cerebellar cortex was studied by light and electron microscope immunocytochemistry using a polyclonal antibody generated in rabbit against GABA coupled to bovine serum albumin with glutaraldehyde. Observations by light microscopy revealed immunostained neuronal bodies and processes as well as axon terminals in all layers of the cerebellar cortex. Perikarya of stellate, basket and Golgi neurons showed evident GABA immunoreactivity. In contrast, perikarya of Purkinje neurons appeared to be negative or weakly positive. Immunoreactive tracts of longitudinally- or obliquely-sectioned neuronal processes and punctate elements, corresponding to axon terminals or cross-sectioned neuronal processes, showed a layer-specific pattern of distribution and were seen on the surface of neuronal bodies, in the neuropil and at microvessel walls. Electron microscope observations mainly focussed on the analysis of GABA-labelled axon terminals and of their relationships with neurons and microvessels. GABA-labelled terminals contained gold particles associated with pleomorphic vesicles and mitochondria and established symmetric synapses with neuronal bodies and dendrites in all cortex layers. GABA-labelled terminals associated with capillaries were seen to contact the perivascular glial processes, basal lamina and endothelial cells and to establish synapses with subendothelial unlabelled axons.To our Master, Professor Rodolfo Amprino, with our great admiration, gratefulness and affection, on the occasion of his ninetieth birthday.
Neuroscience | 2007
Vincenzo Benagiano; Loredana Lorusso; Paolo Flace; Francesco Girolamo; Anna Rizzi; R. Sabatini; P. Auteri; L. Bosco; Raffaele Cagiano; Glauco Ambrosi
The aim of this study was to assess the effects of prenatal exposures to cannabinoids or carbon monoxide (CO) in an animal experimental model reproducing the environmental conditions in which a fetus develops whose mother, during pregnancy, ingests by smoking low doses of cannabinoids or CO. Particular attention was devoted to analyses of the long-term effects of the exposures at the level of the cerebellar cortex, where already during prenatal development the GABAergic neuronal systems may be modulated by both cannabinoids and CO. Three groups of rats were subjected to the following experimental conditions: exposure to cannabinoids by maternal treatment during pregnancy with the cannabinoid CB-1 receptor agonist WIN 55212-2 (WIN) (0.5 mg/kg/day, s.c.); exposure to CO by maternal exposure during pregnancy to CO (75 parts per million, by inhalation); and exposure to WIN+CO at the above doses and means of administration; a fourth group was used as control. The body weight of dams, length of pregnancy, litter size at birth, body weight and postnatal mortality of pups were monitored in order to evaluate possible effects of the exposures on reproduction and on prenatal and postnatal development. In the different groups, the long-term effects of the exposures were studied in adult rats (120-150 days) by light microscopy analyses of the structure of the cerebellar cortex and of the distribution in the cortex of markers of GABAergic neurons, such as GAD and GABA itself. Results. Exposures to WIN or CO did not affect reproduction or prenatal/postnatal development. Moreover, the exposed rats showed no structural alterations of the cerebellar cortex and displayed qualitative distribution patterns of GAD and GABA immunoreactivities similar to those of the controls. However, quantitative analyses indicated significant changes of both of these immunoreactivities: in comparison with the controls, they were significantly increased in WIN-exposed rats and reduced in CO-exposed rats, but not significantly different in WIN+CO-exposed rats. The changes were detected in the molecular and Purkinje neuron layers, but not in the granular layer. Prenatal exposures of rats to WIN or CO, at doses that do not affect reproduction, general processes of development and histomorphogenesis of the cerebellar cortex, cause significant changes of GAD and GABA immunoreactivities in some GABAergic neuronal systems of the adult rat cerebellar cortex, indicating selective up-regulation of GABA-mediated neurotransmission as a long-term consequence of chronic prenatal exposures to cannabinoids or CO. Because the changes consist of overexpression or, vice versa, underexpression of these immunoreactivities, functional alterations of opposite types in the GABAergic systems of the cerebellum following exposure to WIN or CO can be postulated, in agreement with the results of behavioral and clinical studies. No changes in immunoreactivities were detected after prenatal exposure to WIN and CO in association.
The Cerebellum | 2017
Alberto Cacciola; Demetrio Milardi; Paolo Livrea; Paolo Flace; Giuseppe Anastasi; Angelo Quartarone
Sir, We read with great interest the consensus paper by Caligiore et al. about the interplay between the cerebellum, basal ganglia (BG), and cerebral cortex, recently published on The Cerebellum [1]. In this review, the authors, according with previous works, challenged the traditional view on the connections between the BG and cerebellum by stating that both structures integrate inputs from widespread cortical areas in the prefrontal, parietal, and temporal lobes funneling information to the primary motor cortex via the thalamus [2–4]. According to this new vision, the authors propose the existence of an extensive multi-synaptic sub-cortical network connecting the cerebellum and BG both in animals and in humans [5–8]. More in detail, using a neuroanatomical tract-tracing approach, Hoshi et al. [6] have demonstrated in primates topographically organized disynaptic or trisynaptic projections from both motor and non-motor domains of the dentate nucleus, passing through the thalamus and reaching the putamen or the external segment of the globus pallidus. It was also found a disynaptic parallel afferent pathway from sensorimotor, associative, and limbic territories of the subthalamic nucleus (STN) to the posterior aspects of the Crus II (Crus IIp) and the hemispheric lobule VIIB (HVIIB) of the cerebellar cortex, passing through the pontine nuclei [7]. These findings provided an anatomical substrate for cerebellar activity to control and to be influenced by BG activity, suggesting the functional integration of these systems within motor and non-motor domains. Despite neuroanatomical tract-tracing methods still represent the gold standard for studying the anatomo-physiology of BG, the applications to human brain remain elusive due to the invasive nature of these methods [9–12]. On the other hand, the development of diffusional resonance imaging (dMRI) and tractography, despite some limitations, has provided a new, powerful tool to explore, noninvasively, anatomical connectivity within BG network [13]. In particular, one promising approach is constrained spherical deconvolution (CSD), a robust diffusion modeling technique which allows to overcome some of the most important limitations of the DTI approach, such as partial volume effect and the inability to resolve complex fibers configurations within a single voxel [14–18]. In this way, CSD-based tractography, with respect to standard DTI, may increase the sensitivity to detect white matter abnormalities in complex anatomical regions such as the basal ganglia network. Using this non-invasive approach, we confirmed, for the first time in vivo in humans, the presence of extensive connections between the basal ganglia and cerebellum [19]. In particular, in agreement with previous findings of Bostan and associates [7], we confirmed in humans the existence of a sub-cortical pathways running between the STN and cerebellar cortex via the pons [19]. * Alberto Cacciola [email protected]
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014
Paolo Flace; Loredana Lorusso; Giuliana Laiso; Anna Rizzi; Raffaele Cagiano; Beatrice Nico; Domenico Ribatti; Glauco Ambrosi; Vincenzo Benagiano
Calbindin‐D28k (CB) is a calcium‐binding protein largely distributed in the cerebellum of various species of vertebrates. As regards the human cerebellar cortex, precise data on the distribution of CB have not yet been reported. Aim of the present work was to analyze the distribution of CB in postmortem samples of human cerebellar cortex using light microscopy immunohistochemical techniques. Immunoreactivity to CB was detected within neuronal bodies and processes distributed in all cortex layers. In the molecular layer, the immunoreactivity was observed in subpopulations of stellate and basket neurons. In the Purkinje neuron layer, the immunoreactivity was observed in practically all the Purkinje neurons. In the granular layer, the immunoreactivity was observed in subpopulations of granules, of Golgi neurons, and also of other types of large neurons (candelabrum, Lugaro neurons, etc.). Immunoreactivity to CB was also observed in axon terminals distributed throughout the cortex according to layer‐specific patterns of distribution. The qualitative and quantitative patterns of distribution of CB showed no difference among the different lobes of the cerebellar cortex. This study reports that CB is expressed by different neuron types, both inhibitory (GABAergic) and excitatory (glutamatergic), involved in both intrinsic and extrinsic circuits of the human cerebellar cortex. The study provides further insights on the functional role of CB and on the neuronal types of the cerebellar cortex in which it is expressed. Anat Rec, 297:1306–1315, 2014.
The Journal of Comparative Neurology | 2018
Vincenzo Benagiano; Anna Rizzi; Loredana Lorusso; Paolo Flace; Matteo Saccia; Raffaele Cagiano; Domenico Ribatti; Luisa Roncali; Glauco Ambrosi
The cerebrocerebellar circuit is a feedback circuit that bidirectionally connects the neocortex and the cerebellum. According to the classic view, the cerebrocerebellar circuit is specifically involved in the functional regulation of the motor areas of the neocortex. In recent years, studies carried out in experimental animals by morphological and physiological methods, and in humans by magnetic resonance imaging, have indicated that the cerebrocerebellar circuit is also involved in the functional regulation of the nonmotor areas of the neocortex, including the prefrontal, associative, sensory and limbic areas. Moreover, a second type of cerebrocerebellar circuit, bidirectionally connecting the hypothalamus and the cerebellum, has been detected, being specifically involved in the regulation of the hypothalamic functions. This review analyzes the morphological features of the centers and pathways of the cerebrocerebellar circuits, paying particular attention to their organization in different channels, which separately connect the cerebellum with the motor areas and nonmotor areas of the neocortex, and with the hypothalamus. Actually, a considerable amount of new data have led, and are leading, to profound changes on the views on the anatomy, physiology, and pathophysiology of the cerebrocerebellar circuits, so much they may be now considered to be essential for the functional regulation of many neocortex areas, perhaps all, as well as of the hypothalamus and of the limbic system. Accordingly, clinical studies have pointed out an involvement of the cerebrocerebellar circuits in the pathophysiology of an increasing number of neuropsychiatric disorders.