Pascale Marcorelles
University of Western Brittany
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascale Marcorelles.
American Journal of Human Genetics | 2007
Lekbir Baala; Sophie Audollent; Jelena Martinovic; Catherine Ozilou; Marie-Claude Babron; Sivanthiny Sivanandamoorthy; Sophie Saunier; Rémi Salomon; Marie Gonzales; Eleanor Rattenberry; Chantal Esculpavit; Annick Toutain; Claude Moraine; Philippe Parent; Pascale Marcorelles; Marie-Christine Dauge; Joëlle Roume; Martine Le Merrer; Vardiella Meiner; Karen Meir; Françoise Menez; Anne-Marie Beaufrère; Christine Francannet; Julia Tantau; Martine Sinico; Yves Dumez; Fiona Macdonald; Arnold Munnich; Stanislas Lyonnet; Marie-Claire Gubler
Meckel syndrome (MKS) is a rare autosomal recessive lethal condition characterized by central nervous system malformations, polydactyly, multicystic kidney dysplasia, and ductal changes of the liver. Three loci have been mapped (MKS1-MKS3), and two genes have been identified (MKS1/FLJ20345 and MKS3/TMEM67), whereas the gene at the MKS2 locus remains unknown. To identify new MKS loci, a genomewide linkage scan was performed using 10-cM-resolution microsatellite markers in eight families. The highest heterogeneity LOD score was obtained for chromosome 12, in an interval containing CEP290, a gene recently identified as causative of Joubert syndrome (JS) and isolated Leber congenital amaurosis. In view of our recent findings of allelism, at the MKS3 locus, between these two disorders, CEP290 was considered a candidate, and homozygous or compound heterozygous truncating mutations were identified in four families. Sequencing of additional cases identified CEP290 mutations in two fetuses with MKS and in four families presenting a cerebro-reno-digital syndrome, with a phenotype overlapping MKS and JS, further demonstrating that MKS and JS can be variable expressions of the same ciliopathy. These data identify a fourth locus for MKS (MKS4) and the CEP290 gene as responsible for MKS.
PLOS ONE | 2008
Corinne E. Griguer; Claudia R. Oliva; Eric Gobin; Pascale Marcorelles; Dale J. Benos; Jack R. Lancaster; G. Yancey Gillespie
Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho 0 or ρ0, are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these ρ0 cells display the ability to form “tumor spheroids” in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, ρ0 cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to ρ0 cells resulting in stable trans-mitochondrial “cybrid” clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised.
Journal of The American Society of Nephrology | 2006
Mireille Lacoste; Yi Cai; Liliane Guicharnaud; Françoise Mounier; Yves Dumez; Raymonde Bouvier; Frédérique Dijoud; Marie Gonzales; Jane Chatten; Anne-Lise Delezoide; Laurent Daniel; Madeleine Joubert; Nicole Laurent; Jacqueline Aziza; Tahya Sellami; Hatem Ben Amar; Catherine Jarnet; Anne Marie Frances; Farida Daïkha-Dahmane; Aurore Coulomb; Thomas Neuhaus; Bernard Foliguet; Pierre Chenal; Pascale Marcorelles; Jean Marie Gasc; Pierre Corvol; Marie Claire Gubler
Renal tubular dysgenesis is a clinical disorder that is observed in fetuses and characterized by the absence or poor development of proximal tubules, early onset and persistent oligohydramnios that leads to the Potter sequence, and skull ossification defects. It may be acquired during fetal development or inherited as an autosomal recessive disease. It was shown recently that autosomal recessive renal tubular dysgenesis is genetically heterogeneous and linked to mutations in the genes that encode components of the renin-angiotensin system. This study analyzed the clinical expression of the disease in 29 fetus/neonates from 18 unrelated families and evaluated changes in renal morphology and expression of the renin-angiotensin system. The disease was uniformly severe, with perinatal death in all cases as a result of persistent anuria and hypoxia related to pulmonary hypoplasia. Severe defects in proximal tubules were observed in all fetuses from 18 gestational weeks onward, and lesions also involved other tubular segments. They were associated with thickening of the renal arterial vasculature, from the arcuate to the afferent arteries. Renal renin expression was strikingly increased in 19 of 24 patients studied, from 13 families, whereas no renal renin was detected in four patients from three families. Angiotensinogen and angiotensin-converting enzyme were absent or present in only small amounts in the proximal tubule, in correlation with the severity of tubular abnormalities. No specific changes were detected in angiotensin II receptor expression. The severity and the early onset of the clinical and pathologic expression of the disease underline the major importance of this system in fetal kidney function and development in humans. The identification of the disease on the basis of precise histologic analysis and the research of the genetic defect now allow genetic counseling and early prenatal diagnosis.
Journal of Neuropathology and Experimental Neurology | 2014
Natacha Teissier; Catherine Fallet-Bianco; Anne-Lise Delezoide; Annie Laquerrière; Pascale Marcorelles; Suonavy Khung-Savatovsky; Jeannette Nardelli; Sara Cipriani; Zsolt Csaba; Olivier Picone; Jeffrey A. Golden; Thierry Van Den Abbeele; Pierre Gressens; Homa Adle-Biassette
Neurologic morbidity associated with congenital cytomegalovirus (CMV) infection is a major public health concern. The pathogenesis of cerebral lesions remains unclear. We report the neuropathologic substrates, the immune response, and the cellular targets of CMV in 16 infected human fetal brains aged 23 to 28.5 gestational weeks. Nine cases were microcephalic, 10 had extensive cortical lesions, 8 had hippocampal abnormalities, and 5 cases showed infection of the olfactory bulb. The density of CMV-immunolabeled cells correlated with the presence of microcephaly and the extent of brain abnormalities. Innate and adaptive immune responses were present but did not react against all CMV-infected cells. Cytomegalovirus infected all cell types but showed higher tropism for stem cells/radial glial cells. The results indicate that 2 main factors influence the neuropathologic outcome at this stage: the density of CMV-positive cells and the tropism of CMV for stem/progenitor cells. This suggests that the large spectrum of CMV-induced brain abnormalities is caused not only by tissue destruction but also by the particular vulnerability of stem cells during early brain development. Florid infection of the hippocampus and the olfactory bulb may expose these patients to the risk of neurocognitive and sensorineural handicap even in cases of infection at late stages of gestation.
Acta neuropathologica communications | 2014
Catherine Fallet-Bianco; Annie Laquerrière; Karine Poirier; Ferechte Razavi; Fabien Guimiot; Patricia Dias; Laurence Loeuillet; Karine Lascelles; Cherif Beldjord; Nathalie Carion; Aurélie Toussaint; Nicole Revencu; Marie-Claude Addor; Benoit Lhermitte; Marie Gonzales; Jelena Martinovich; Bettina Bessières; Maryse Marcy-Bonnière; Frédérique Jossic; Pascale Marcorelles; Philippe Loget; Jamel Chelly; Nadia Bahi-Buisson
Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as “Tubulinopathies”. To further characterize the mutation frequency and phenotypes associated with tubulin mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2–3 layered pattern (5/13) or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6), consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6) and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for either polymicrogyria (4/6) or microlissencephaly (2/6).
Acta Neuropathologica | 2010
Pascale Marcorelles; Annie Laquerrière; Christine Adde-Michel; Stéphane Marret; Pascale Saugier-Veber; Chérif Beldjord; Gaëlle Friocourt
During corticogenesis, neurons adopt different migration pathways to reach their final position. The precursors of pyramidal neurons migrate radially, whereas most of the GABA-containing interneurons are generated in the ventral telencephalon and migrate tangentially into the neocortex. Then, they use a radial migration mode to establish themselves in an inside-out manner in the neocortex, similarly to pyramidal neurons. In humans, the most severe defects in radial migration result in lissencephaly. Lately, a few studies suggested that lissencephaly was also associated with tangential neuronal migration deficits. In the present report, we investigated potential anomalies of this migration mode in three agyric/pachygyric syndromes due to defects in the LIS1, DCX and ARX genes. Immunohistochemistry was performed on paraffin-embedded supra- and infratentorial structures using calretinin, calbindin and parvalbumin antisera. The results were compared with age-matched control brain tissue. In the Miller–Dieker syndrome, GABAergic neurons were found both in upper layers of the cortex and in heterotopic positions in the intermediate zone and in ganglionic eminences. In the DCX mutant brain, few interneurons were dispersed in the cortical plate, with a massive accumulation in the intermediate zone and subventricular zone as well as in the ganglionic eminences. In the ARX-mutated brain, the cortical plate contained almost exclusively pyramidal cells and was devoid of interneurons. The ganglionic eminences and basal ganglia were poorly cellular, suggesting an interneuron production and/or differentiation defect. These data argue for different mechanisms of telencephalic tangential migration impairment in these three agyric/pachygyric syndromes.
Human Mutation | 2009
Claude Bendavid; Lucie Rochard; Christèle Dubourg; Jonathan Seguin; Isabelle Gicquel; Laurent Pasquier; Jaqueline Vigneron; Annie Laquerrière; Pascale Marcorelles; Corinne Jeanne‐Pasquier; Caroline Rouleau; Sylvie Jaillard; Jean Mosser; Sylvie Odent; Véronique David
Holoprosencephaly (HPE) is the most frequent malformation of the brain. To date, 12 different HPE loci and 8 HPE genes have been identified from recurrent chromosomal rearrangements or from the sequencing of genes from Nodal and SHH pathways. Our cohort of HPE patients presents a high genetic heterogeneity. Point mutations were found in SHH, ZIC2, SIX3, and TGIF genes in about 20% of cases (with 10% in SHH). Deletions in these same genes were found in 7.5% of the patients and 4.4% presented with other subtelomeric gain or losses. Consequently, the molecular basis of HPE remains unknown in 70% of our cohorts. To detect new HPE candidate genes, we used array‐CGH to refine the previous karyotype based HPE loci map. We analyzed 111 HPE patients with high‐performance Agilent oligonucleotidic arrays and found that 28 presented anomalies involving known or new potential HPE loci located on different chromosomes but with poor redundancy. This study showed an impressive rate of 19 patients among 111 with de novo chromosomal anomalies giving evidence that microrearrangements could be a major molecular mechanism in HPE. Additionally, this study opens new insights on HPE candidate genes identification giving an updated HPE candidate loci map. Hum Mutat 30:1–8, 2009.
PLOS ONE | 2013
Paul Guéguen; Karen Rouault; Jian-Min Chen; Odile Raguénès; Yann Fichou; Elisabeth Hardy; Eric Gobin; Brigitte Pan-Petesch; Mathieu Kerbiriou; Pascal Trouvé; Pascale Marcorelles; Jean-François Abgrall; Cédric Le Maréchal; Claude Férec
Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22) with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln) in the alpha-actinin 1 gene (ACTN1) that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.
Human Molecular Genetics | 2013
Klaus Dieterich; Susana Quijano-Roy; Nicole Monnier; Jie Zhou; Julien Fauré; Daniela Avila Smirnow; Robert Carlier; Cécile Laroche; Pascale Marcorelles; Sandra Mercier; André Mégarbané; Sylvie Odent; Norma B. Romero; Damien Sternberg; Isabelle Marty; Brigitte Estournet; Pierre-Simon Jouk; Judith Melki; Joël Lunardi
Distal arthrogryposis (DA) is a heterogeneous subgroup of arthrogryposis multiplex congenita (AMC), a large family of disorders characterized by multiple congenital joint limitations due to reduced fetal movements. DA is mainly characterized by contractures afflicting especially the distal extremities without overt muscular or neurological signs. Although a limited number of genes mostly implicated in the contractile apparatus have been identified in DA, most patients failed to show mutations in currently known genes. Using a pangenomic approach, we demonstrated linkage of DA to chromosome 2q37 in two consanguineous families and the endothelin-converting enzyme like 1 (ECEL1) gene present in this region was associated with DA. Screening of a panel of 20 families with non-specific DA identified seven homozygous or compound heterozygous mutations of ECEL1 in a total of six families. Mutations resulted mostly in the absence of protein. ECEL1 is a neuronal endopeptidase predominantly expressed in the central nervous system and brain structures during fetal life in mice and human. ECEL1 plays a major role in intramuscular axonal branching of motor neurons in skeletal muscle during embryogenesis. A detailed review of clinical findings of DA patients with ECEL1 mutations revealed a homogeneous and recognizable phenotype characterized by limited knee flexion, flexed third to fifth fingers and severe muscle atrophy predominant on lower limbs and tongue that suggested a common pathogenic mechanism. We described a new and homogenous phenotype of DA associated with ECEL1 that resulted in symptoms involving rather the peripheral than the central nervous system and suggesting a developmental dysfunction.
Acta Neuropathologica | 2011
Gaëlle Friocourt; Pascale Marcorelles; Pascale Saugier-Veber; Marie-Lise Quillé; Stéphane Marret; Annie Laquerrière
Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation.