Patricia I. Bader
Memorial Hospital of South Bend
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia I. Bader.
Nature Genetics | 2011
Gregory M. Cooper; Bradley P. Coe; Santhosh Girirajan; Jill A. Rosenfeld; Tiffany H. Vu; Carl Baker; Charles A. Williams; Heather J. Stalker; Rizwan Hamid; Vickie Hannig; Hoda Abdel-Hamid; Patricia I. Bader; Elizabeth McCracken; Dmitriy Niyazov; Kathleen A. Leppig; Heidi Thiese; Marybeth Hummel; Nora Alexander; Jerome L. Gorski; Jennifer Kussmann; Vandana Shashi; Krys Johnson; Catherine Rehder; Blake C. Ballif; Lisa G. Shaffer; Evan E. Eichler
To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.
Nature Genetics | 2008
Nicola Brunetti-Pierri; Jonathan S. Berg; Fernando Scaglia; John W. Belmont; Carlos A. Bacino; Trilochan Sahoo; Seema R. Lalani; Brett H. Graham; Brendan Lee; Marwan Shinawi; Joseph Shen; Sung Hae L Kang; Amber Pursley; Timothy Lotze; Gail Kennedy; Susan Lansky-Shafer; Christine Weaver; Elizabeth Roeder; Theresa A. Grebe; Georgianne L. Arnold; Terry Hutchison; Tyler Reimschisel; Stephen Amato; Michael T. Geragthy; Jeffrey W. Innis; Ewa Obersztyn; Beata Nowakowska; Sally Rosengren; Patricia I. Bader; Dorothy K. Grange
Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects, developmental delay, schizophrenia and related psychoses. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with microdeletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus was inserted into the 1q21.1 region during the evolution of Homo sapiens; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.
Genetics in Medicine | 2010
Ruxandra Bachmann-Gagescu; Mefford Hc; Charles A. Cowan; Gwen M. Glew; Anne V. Hing; Wallace Se; Patricia I. Bader; Aline Hamati; Pamela J. Reitnauer; Rosemarie Smith; David W. Stockton; Hiltrud Muhle; Ingo Helbig; Evan E. Eichler; Blake C. Ballif; Jill A. Rosenfeld; Karen D. Tsuchiya
Purpose: The short arm of chromosome 16 is rich in segmental duplications, predisposing this region of the genome to a number of recurrent rearrangements. Genomic imbalances of an approximately 600-kb region in 16p11.2 (29.5–30.1 Mb) have been associated with autism, intellectual disability, congenital anomalies, and schizophrenia. However, a separate, distal 200-kb region in 16p11.2 (28.7–28.9 Mb) that includes the SH2B1 gene has been recently associated with isolated obesity. The purpose of this study was to better define the phenotype of this recurrent SH2B1-containing microdeletion in a cohort of phenotypically abnormal patients not selected for obesity.Methods: Array comparative hybridization was performed on a total of 23,084 patients in a clinical setting for a variety of indications, most commonly developmental delay.Results: Deletions of the SH2B1-containing region were identified in 31 patients. The deletion is enriched in the patient population when compared with controls (P = 0.003), with both inherited and de novo events. Detailed clinical information was available for six patients, who all had developmental delays of varying severity. Body mass index was ≥95th percentile in four of six patients, supporting the previously described association with obesity. The reciprocal duplication, found in 17 patients, does not seem to be significantly enriched in our patient population compared with controls.Conclusions: Deletions of the 16p11.2 SH2B1-containing region are pathogenic and are associated with developmental delay in addition to obesity.
American Journal of Medical Genetics Part A | 2010
Shweta U. Dhar; Daniela del Gaudio; Jennifer R German; Sarika U. Peters; Zhishuo Ou; Patricia I. Bader; Jonathan S. Berg; Maria Blazo; Chester W. Brown; Brett H. Graham; Theresa A. Grebe; Seema R. Lalani; Mira Irons; Steven Sparagana; Misti Williams; John A. Phillips; Arthur L. Beaudet; Pawel Stankiewicz; Ankita Patel; S.W. Cheung; Trilochan Sahoo
The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype–phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of 13 patients. Developmental delay and speech abnormalities were common to all and comparable in frequency and severity to previously reported cases. Array‐based comparative genomic hybridization showed the deletions to vary from 95 kb to 8.5 Mb. We also carried out high‐resolution 244K array comparative genomic hybridization in 10 of 13 patients, that defined the proximal and distal breakpoints of each deletion and helped determine the size, extent, and gene content within the deletion. Two patients had a smaller 95 kb terminal deletion with breakpoints within the SHANK3 gene while three other patients had a similar 5.5 Mb deletion implying the recurrent nature of these deletions. The two largest deletions were found in patients with ring chromosome 22. No correlation could be made with deletion size and phenotype although complete/partial SHANK3 was deleted in all patients. There are very few reports on array comparative genomic hybridization analysis on patients with the 22q13.3 deletion syndrome, and we aim to accurately characterize these patients both clinically and at the molecular level, to pave the way for further genotype–phenotype correlations.
Human Genetics | 2012
Blake C. Ballif; Jill A. Rosenfeld; Ryan Traylor; Aaron Theisen; Patricia I. Bader; Roger L. Ladda; Susan Sell; Michelle Steinraths; Urvashi Surti; Marianne McGuire; Shelley Williams; Sandra A. Farrell; James J. Filiano; Rhonda E. Schnur; Lauren B. Coffey; Raymond C. Tervo; Tracy Stroud; Michael Marble; Michael L. Netzloff; Kristen Hanson; Arthur S. Aylsworth; John S. Bamforth; Deepti Babu; Dmitriy Niyazov; J. Britt Ravnan; Roger A. Schultz; Allen N. Lamb; Beth S. Torchia; Bassem A. Bejjani; Lisa G. Shaffer
Microdeletions of 1q43q44 result in a recognizable clinical disorder characterized by moderate to severe intellectual disability (ID) with limited or no expressive speech, characteristic facial features, hand and foot anomalies, microcephaly (MIC), abnormalities (agenesis/hypogenesis) of the corpus callosum (ACC), and seizures (SZR). Critical regions have been proposed for some of the more prominent features of this disorder such as MIC and ACC, yet conflicting data have prevented precise determination of the causative genes. In this study, the largest of pure interstitial and terminal deletions of 1q43q44 to date, we characterized 22 individuals by high-resolution oligonucleotide microarray-based comparative genomic hybridization. We propose critical regions and candidate genes for the MIC, ACC, and SZR phenotypes associated with this microdeletion syndrome. Three cases with MIC had small overlapping or intragenic deletions of AKT3, an isoform of the protein kinase B family. The deletion of only AKT3 in two cases implicates haploinsufficiency of this gene in the MIC phenotype. Likewise, based on the smallest region of overlap among the affected individuals, we suggest a critical region for ACC that contains ZNF238, a transcriptional and chromatin regulator highly expressed in the developing and adult brain. Finally, we describe a critical region for the SZR phenotype which contains three genes (FAM36A, C1ORF199, and HNRNPU). Although ~90% of cases in this study and in the literature fit these proposed models, the existence of phenotypic variability suggests other mechanisms such as variable expressivity, incomplete penetrance, position effects, or multigenic factors could account for additional complexity in some cases.
European Journal of Human Genetics | 2011
Sandesh C.S. Nagamani; Ayelet Erez; Patricia I. Bader; Seema R. Lalani; Daryl A. Scott; Fernando Scaglia; Sharon E. Plon; Chun Hui Tsai; Tyler Reimschisel; Elizabeth Roeder; Amy D. Malphrus; Patricia A. Eng; Patricia Hixson; Sung Hae L Kang; Pawel Stankiewicz; Ankita Patel; Sau Wai Cheung
The widespread clinical utilization of array comparative genome hybridization, has led to the unraveling of many new copy number variations (CNVs). Although some of these CNVs are clearly pathogenic, the phenotypic consequences of others, such as those in 16p13.11 remain unclear. Whereas deletions of 16p13.11 have been associated with multiple congenital anomalies, the relevance of duplications of the region is still being debated. We report detailed clinical and molecular characterization of 10 patients with duplication and 4 patients with deletion of 16p13.11. We found that patients with duplication of the region have varied clinical features including behavioral abnormalities, cognitive impairment, congenital heart defects and skeletal manifestations, such as hypermobility, craniosynostosis and polydactyly. These features were incompletely penetrant. Patients with deletion of the region presented with microcephaly, developmental delay and behavioral abnormalities as previously described. The CNVs were of varying sizes and were likely mediated by non-allelic homologous recombination between low copy repeats. Our findings expand the repertoire of clinical features observed in patients with CNV in 16p13.11 and strengthen the hypothesis that this is a dosage sensitive region with clinical relevance.
European Journal of Human Genetics | 2012
Christian P. Schaaf; Philip M. Boone; Srirangan Sampath; Charles A. Williams; Patricia I. Bader; Jennifer Mueller; Oleg A. Shchelochkov; Chester W. Brown; Heather P. Crawford; James A. Phalen; Nicole Tartaglia; Patricia Evans; William M. Campbell; Anne Chun-Hui Tsai; Lea Parsley; Stephanie W. Grayson; Angela Scheuerle; Carol D. Luzzi; Sandra K. Thomas; Patricia A. Eng; Sung Hae L Kang; Ankita Patel; Pawel Stankiewicz; Sau Wai Cheung
Copy number variants (CNVs) and intragenic rearrangements of the NRXN1 (neurexin 1) gene are associated with a wide spectrum of developmental and neuropsychiatric disorders, including intellectual disability, speech delay, autism spectrum disorders (ASDs), hypotonia and schizophrenia. We performed a detailed clinical and molecular characterization of 24 patients who underwent clinical microarray analysis and had intragenic deletions of NRXN1. Seventeen of these deletions involved exons of NRXN1, whereas seven deleted intronic sequences only. The patients with exonic deletions manifested developmental delay/intellectual disability (93%), infantile hypotonia (59%) and ASDs (56%). Congenital malformations and dysmorphic features appeared infrequently and inconsistently among this population of patients with NRXN1 deletions. The more C-terminal deletions, including those affecting the β isoform of neurexin 1, manifested increased head size and a high frequency of seizure disorder (88%) when compared with N-terminal deletions of NRXN1.
American Journal of Medical Genetics | 2010
Barbara Wisniowiecka-Kowalnik; Monika Nesteruk; Sarika U. Peters; Zhilian Xia; M. Lance Cooper; Sarah Savage; R. Stephen Amato; Patricia I. Bader; Marsha F. Browning; Christa L. Haun; Andrew Walter Duda; Sau Wai Cheung; Pawel Stankiewicz
NRXN1 is highly expressed in brain and has been shown recently to be associated with ASD, schizophrenia, cognitive and behavioral abnormalities, and alcohol and nicotine dependence. We present three families, in whom we identified intragenic rearrangements within NRXN1 using a clinical targeted oligonucleotide array CGH. An ∼380 kb deletion was identified in a woman with Asperger syndrome, anxiety, and depression and in all four of her children affected with autism, anxiety, developmental delay, and speech delay but not in an unaffected child. An ∼180 kb tandem duplication was found in a patient with autistic disorder and cognitive delays, and in his mother and younger brother who have speech delay. An ∼330 kb tandem duplication was identified in a patient with autistic features. As predicted by conceptual translation, all three genomic rearrangements led to the premature truncation of NRXN1. Our data support previous observations that NRXN1 may be pathogenic in a wide variety of psychiatric diseases, including autism spectrum disorder, global developmental delay, anxiety, and depression.
American Journal of Medical Genetics Part A | 2013
Mindy Preston Dabell; Jill A. Rosenfeld; Patricia I. Bader; Luis F. Escobar; Dima El-Khechen; Stephanie E. Vallee; Mary Beth Dinulos; Cynthia J. Curry; Jamie Fisher; Raymond C. Tervo; Mark C. Hannibal; Kiana Siefkas; Philip R. Wyatt; Lauren Hughes; Rosemarie Smith; Sara Ellingwood; Yves Lacassie; Tracy Stroud; Sandra A. Farrell; Pedro A. Sanchez-Lara; Linda M. Randolph; Dmitriy Niyazov; Cathy A. Stevens; Cheri Schoonveld; David Skidmore; Sara MacKay; Judith H. Miles; Manikum Moodley; Adam Huillet; Nicholas J. Neill
Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray‐based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10−7), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.
American Journal of Medical Genetics Part A | 2010
Jill A. Rosenfeld; John A. Crolla; Susan Tomkins; Patricia I. Bader; Bernice E. Morrow; Jerome L. Gorski; Robin Troxell; Cynthia Forster-Gibson; Deirdre Cilliers; R. Gordon Hislop; Allen N. Lamb; Beth S. Torchia; Blake C. Ballif; Lisa G. Shaffer
Monosomy 1p36 is the most common terminal deletion syndrome seen in humans, occurring in ∼1 in 5,000 live births. Common features include mental retardation, characteristic dysmorphic features, hypotonia, seizures, hearing loss, heart defects, cardiomyopathy, and behavior abnormalities. Similar phenotypes are seen among patients with a variety of deletion sizes, including terminal and interstitial deletions, complex rearrangements, and unbalanced translocations. Consequently, critical regions harboring causative genes for each of these features have been difficult to identify. Here we report on five individuals with 200–823 kb overlapping deletions of proximal 1p36.33, four of which are apparently de novo. They present with features of monosomy 1p36, including developmental delay and mental retardation, dysmorphic features, hypotonia, behavioral abnormalities including hyperphagia, and seizures. The smallest region of deletion overlap is 174 kb and contains five genes; these genes are likely candidates for some of the phenotypic features in monosomy 1p36. Other genes deleted in a subset of the patients likely play a contributory role in the phenotypes, including GABRD and seizures, PRKCZ and neurologic features, and SKI and dysmorphic and neurologic features. Characterization of small deletions is important for narrowing critical intervals and for the identification of causative or candidate genes for features of monosomy 1p36 syndrome.