Patrick Giavalisco
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Giavalisco.
Plant Journal | 2009
Jonathan T. Vogel; Michael Walter; Patrick Giavalisco; Anna Lytovchenko; Wouter Kohlen; Tatsiana Charnikhova; Andrew J. Simkin; Charles Goulet; Dieter Strack; Harro J. Bouwmeester; Alisdair R. Fernie; Harry J. Klee
The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8, encode carotenoid cleavage enzymes involved in generating a branch-inhibiting hormone, recently identified as strigolactone. Here, we report the cloning of SlCCD7 from tomato. As in other species, SlCCD7 encodes an enzyme capable of cleaving cyclic and acyclic carotenoids. However, the SlCCD7 protein has 30 additional amino acids of unknown function at its C terminus. Tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. To reveal the underlying changes of this strong physiological phenotype, a metabolomic screen was conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes were observed. In contrast, targeted analysis of the same plants revealed significantly decreased levels of strigolactone. There were no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds was reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Additionally, upon mycorrhizal colonization, C(13) cyclohexenone and C(14) mycorradicin apocarotenoid levels were greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis. This work demonstrates the diverse roles of MAX3/CCD7 in strigolactone production, shoot branching, source-sink interactions and production of arbuscular mycorrhiza-induced apocarotenoids.
Plant Physiology | 2009
María Inés Zanor; Sortia Osório; Adriano Nunes-Nesi; Fernando Carrari; Marc Lohse; Christina Kühn; Wilfrid Bleiss; Patrick Giavalisco; Lothar Willmitzer; Ronan Sulpice; Yan-Hong Zhou; Alisdair R. Fernie
It has been previously demonstrated, utilizing intraspecific introgression lines, that Lycopersicum Invertase5 (LIN5), which encodes a cell wall invertase, controls total soluble solids content in tomato (Solanum lycopersicum). The physiological role of this protein, however, has not yet been directly studied, since evaluation of data obtained from the introgression lines is complicated by the fact that they additionally harbor many other wild species alleles. To allow a more precise comparison, we generated transgenic tomato in which we silenced the expression of LIN5 using the RNA interference approach. The transformants were characterized by an altered flower and fruit morphology, displaying increased numbers of petals and sepals per flower, an increased rate of fruit abortion, and a reduction in fruit size. Evaluation of the mature fruit revealed that the transformants were characterized by a reduction of seed number per plant. Furthermore, detailed physiological analysis revealed that the transformants displayed aberrant pollen morphology and a reduction in the rate of pollen tube elongation. Metabolite profiling of ovaries and green and red fruit revealed that metabolic changes in the transformants were largely confined to sugar metabolism, whereas transcript and hormone profiling revealed broad changes both in the hormones themselves and in transcripts encoding their biosynthetic enzymes and response elements. These results are discussed in the context of current understanding of the role of sugar during the development of tomato fruit, with particular focus given to its impact on hormone levels and organ morphology.
Plant Journal | 2011
Patrick Giavalisco; Yan Li; Annemarie Matthes; Aenne Eckhardt; Hans-Michael Hubberten; Holger Hesse; Shruthi Segu; Jan Hummel; Karin Köhl; Lothar Willmitzer
The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.
Plant Journal | 2012
Stephan Kueger; Dirk Steinhauser; Lothar Willmitzer; Patrick Giavalisco
The main goal of metabolomics is the comprehensive qualitative and quantitative analysis of the time- and space-resolved distribution of all metabolites present in a given biological system. Because metabolite structures, in contrast to transcript and protein sequences, are not directly deducible from the genomic DNA sequence, the massive increase in genomic information is only indirectly of use to metabolomics, leaving compound annotation as a key problem to be solved by the available analytical techniques. Furthermore, as metabolites vary widely in both concentration and chemical behavior, there is no single analytical procedure allowing the unbiased and comprehensive structural elucidation and determination of all metabolites present in a given biological system. In this review the different approaches for targeted and non-targeted metabolomics analysis will be described with special emphasis on mass spectrometry-based techniques. Particular attention is given to approaches which can be employed for the annotation of unknown compounds. In the second part, the different experimental approaches aimed at tissue-specific or subcellular analysis of metabolites are discussed including a range of non-mass spectrometry based technologies.
Analytical Chemistry | 2009
Patrick Giavalisco; Karin Köhl; Jan Hummel; Bettina Seiwert; Lothar Willmitzer
Metabolomics is rapidly becoming an integral part of many life science studies ranging from disease diagnostics to systems biology. However, a number of problems such as the discrimination of biological from non-biological signals, efficient compound annotation, and reliable quantification are still not satisfactorily solved in untargeted LC-MS-based metabolomics research. Extending our previous work on direct infusion-based metabolomics, we here describe a (13)C isotope labeling strategy in combination with an Ultra Performance Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-based approach (UPLC-FTICR MS) which provides a technological platform offering solutions to a number of the above-mentioned problems. We further demonstrate that the use of a fully labeled metabolome is not only beneficial for high end mass spectrometers, such as that used in this study but also provides a considerable improvement to every other mass spectrometry-based metabolomic platform.
Journal of Experimental Botany | 2014
Umesh Prasad Yadav; Alexander Ivakov; Regina Feil; Guang You Duan; Dirk Walther; Patrick Giavalisco; Maria Piques; Petronia Carillo; Hans-Michael Hubberten; Mark Stitt; John E. Lunn
Summary Trehalose-6-phosphate is a signal of sucrose status in plants and forms part of a homeostatic mechanism that maintains sucrose levels within a range that is appropriate for the cell type and stage of development.
Plant Physiology | 2013
Mutsumi Watanabe; Salma Balazadeh; Takayuki Tohge; Alexander Erban; Patrick Giavalisco; Joachim Kopka; Bernd Mueller-Roeber; Alisdair R. Fernie; Rainer Hoefgen
Spatiotemporal analysis during developmental senescence provides a rich catalog of metabolites in relation to leaf and silique development in Arabidopsis. Developmental senescence is a coordinated physiological process in plants and is critical for nutrient redistribution from senescing leaves to newly formed sink organs, including young leaves and developing seeds. Progress has been made concerning the genes involved and the regulatory networks controlling senescence. The resulting complex metabolome changes during senescence have not been investigated in detail yet. Therefore, we conducted a comprehensive profiling of metabolites, including pigments, lipids, sugars, amino acids, organic acids, nutrient ions, and secondary metabolites, and determined approximately 260 metabolites at distinct stages in leaves and siliques during senescence in Arabidopsis (Arabidopsis thaliana). This provided an extensive catalog of metabolites and their spatiotemporal cobehavior with progressing senescence. Comparison with silique data provides clues to source-sink relations. Furthermore, we analyzed the metabolite distribution within single leaves along the basipetal sink-source transition trajectory during senescence. Ceramides, lysolipids, aromatic amino acids, branched chain amino acids, and stress-induced amino acids accumulated, and an imbalance of asparagine/aspartate, glutamate/glutamine, and nutrient ions in the tip region of leaves was detected. Furthermore, the spatiotemporal distribution of tricarboxylic acid cycle intermediates was already changed in the presenescent leaves, and glucosinolates, raffinose, and galactinol accumulated in the base region of leaves with preceding senescence. These results are discussed in the context of current models of the metabolic shifts occurring during developmental and environmentally induced senescence. As senescence processes are correlated to crop yield, the metabolome data and the approach provided here can serve as a blueprint for the analysis of traits and conditions linking crop yield and senescence.
Plant Molecular Biology | 2005
Patrick Giavalisco; Daniel N. Wilson; Thomas Kreitler; Hans Lehrach; Joachim Klose; Johan Gobom; Paola Fucini
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.
BMC Plant Biology | 2005
Julia Kehr; Anja Buhtz; Patrick Giavalisco
BackgroundSubstance transport in higher land plants is mediated by vascular bundles, consisting of phloem and xylem strands that interconnect all plant organs.While the phloem mainly allocates photoassimilates, the role of the xylem is the transport of water and inorganic nutrients from roots to all aerial plant parts. Only recently it was noticed that in addition to mineral salts, xylem sap contains organic nutrients and even proteins. Although these proteins might have important impact on the performance of above-ground organs, only a few of them have been identified so far and their physiological functions are still unclear.ResultsWe used root-pressure xylem exudate, collected from cut Brassica napus stems, to extract total proteins. These protein preparations were then separated by high-resolution two-dimensional gel electrophoresis (2-DE). After individual tryptic digests of the most abundant coomassie-stained protein spots, partial peptide sequence information was deduced from tandem mass spectrometric (MS/MS) fragmentation spectra and subsequently used for protein identifications by database searches. This approach resulted in the identification of 69 proteins. These identifications include different proteins potentially involved in defence-related reactions and cell wall metabolism.ConclusionThis study provides a comprehensive overview of the most abundant proteins present in xylem sap of Brassica napus. A number of 69 proteins could be identified from which many previously were not known to be localized to this compartment in any other plant species. Since Brassica napus, a close relative of the fully sequenced model plant Arabidopsis thaliana, was used as the experimental system, our results provide a large number of candidate proteins for directed molecular and biochemical analyses of the physiological functions of the xylem under different environmental and developmental conditions. This approach will allow exploiting many of the already established functional genomic resources, like i.e. the large mutant collections, that are available for Arabidopsis.
Plant Journal | 2013
Camila Caldana; Yan Li; Andrea Leisse; Yi Zhang; Lisa Bartholomaeus; Alisdair R. Fernie; Lothar Willmitzer; Patrick Giavalisco
The target of rapamycin (TOR) pathway is a major regulator of growth in all eukaryotes, integrating energy, nutrient and stress signals into molecular decisions. By using large-scale MS-based metabolite profiling of primary, secondary and lipid compounds in combination with array-based transcript profiling, we show that the TOR protein not only regulates growth but also influences nutrient partitioning and central energy metabolism. The study was performed on plants exhibiting conditional down-regulation of AtTOR expression, revealing strong regulation of genes involved in pathways such as the cell cycle, cell-wall modifications and senescence, together with major changes in transcripts and metabolites of the primary and secondary metabolism. In agreement with these results, our morphological and metabolic analyses disclosed major metabolic changes leading to massive accumulations of storage lipids and starch. The implications of these data in the context of the general role of TOR in eukaryotic systems are discussed in parallel with the plant-specific aspects of TOR function. Finally, we propose a role for harnessing the plant TOR pathway by utilizing it as a potent metabolic switch, offering a possible route for biotechnological optimization of plant energy content and carbon partitioning for the production of bioenergy.