Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Jacquemin is active.

Publication


Featured researches published by Patrick Jacquemin.


Gastroenterology | 2012

Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice

Regina Espanol Suner; Rodolphe Carpentier; Noémi Van Hul; Vanessa Legry; Younes Achouri; Sabine Cordi; Patrick Jacquemin; Frédéric P. Lemaigre; Isabelle A. Leclercq

BACKGROUND & AIMS Self-renewal of mature hepatocytes promotes homeostasis and regeneration of adult liver. However, recent studies have indicated that liver progenitor cells (LPC) could give rise to hepatic epithelial cells during normal turnover of the liver and after acute injury. We investigated the capacity of LPC to differentiate into hepatocytes in vivo and contribute to liver regeneration. METHODS We performed lineage tracing experiments, using mice that express tamoxifen-inducible Cre recombinase under control of osteopontin regulatory region crossed with yelow fluorescent protein reporter mice, to follow the fate of LPC and biliary cells. Adult mice received partial (two-thirds) hepatectomy, acute or chronic administration of carbon tetrachloride (CCl(4)), choline-deficient diet supplemented with ethionine, or 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. RESULTS LPC and/or biliary cells generated 0.78% and 2.45% of hepatocytes during and upon recovery of mice from liver injury, respectively. Repopulation efficiency by LPC and/or biliary cells increased when extracellular matrix and laminin deposition were reduced. The newly formed hepatocytes integrated into hepatic cords, formed biliary canaliculi, expressed hepato-specific enzymes, accumulated glycogen, and proliferated in response to partial hepatectomy, as neighboring native hepatocytes. By contrast, LPC did not contribute to hepatocyte regeneration during normal liver homeostasis, in response to surgical or toxic loss of liver mass, during chronic liver injury (CCl(4)-induced), or during ductular reactions. CONCLUSIONS LPC or biliary cells terminally differentiate into functional hepatocytes in mice with liver injury.


Developmental Biology | 2003

The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade.

Patrick Jacquemin; Frédéric P. Lemaigre; Guy G. Rousseau

The pancreas derives from cells in the ventral and dorsal foregut endoderm that express the transcription factor Pdx-1. These specified cells give rise to the precursors of the endocrine, ductal, and exocrine pancreatic cells. The identification of transcription factors that regulate the onset of Pdx-1 expression is therefore essential to understand pancreas development. No such factor that acts both in the ventral and in the dorsal endoderm is known. We showed previously that the Onecut transcription factor HNF-6 promotes differentiation of the endocrine cell precursors in which it stimulates expression of the proendocrine gene Ngn-3. By analyzing the phenotype of HNF-6 null mice, we now demonstrate that HNF-6 also controls an earlier step in pancreas development. Indeed, the pancreas of Hnf6(-/-) mice was hypoplastic. This did not result from decreased proliferation or from increased apoptosis, but from retarded pancreatic specification of endodermal cells. The onset of Pdx-1 expression was delayed both in the ventral and in the dorsal endoderm, leading to a reduction in the number of endodermal cells expressing Pdx-1 at the time of pancreatic budding. In normal embryos, HNF-6 was detected in the endoderm prior to the expression of Pdx-1. Moreover, HNF-6 could directly stimulate the Pdx1 promoter. Our data therefore identify HNF-6 as the first factor known to control Pdx-1 expression both in the ventral and in the dorsal endoderm. We conclude that HNF-6 controls the timing of pancreas specification and that HNF-6 acts upstream of Pdx-1 in this developmental process. Together with the known role of HNF-6 in pancreatic endocrine cell differentiation, our data point to HNF-6 as a key regulator of pancreas development.


Gastroenterology | 2012

A Feedback Loop Between the Liver-Enriched Transcription Factor Network and Mir-122 Controls Hepatocyte Differentiation

Ilaria Laudadio; Isabelle Manfroid; Younes Achouri; Dominic Schmidt; Michael D. Wilson; Sabine Cordi; Lieven Thorrez; Laurent Knoops; Patrick Jacquemin; Frans Schuit; Christophe E. Pierreux; Duncan T. Odom; Bernard Peers; Frédéric P. Lemaigre

BACKGROUND & AIMS Hepatocyte differentiation is controlled by liver-enriched transcription factors (LETFs). We investigated whether LETFs control microRNA expression during development and whether this control is required for hepatocyte differentiation. METHODS Using in vivo DNA binding assays, we identified miR-122 as a direct target of the LETF hepatocyte nuclear factor (HNF) 6. The role and mechanisms of the HNF6-miR-122 gene cascade in hepatocyte differentiation were studied in vivo and in vitro by gain-of-function and loss-of-function experiments, using developing mice and zebrafish as model organisms. RESULTS HNF6 and its paralog Onecut2 are strong transcriptional stimulators of miR-122 expression. Specific levels of miR-122 were required for proper progression of hepatocyte differentiation; miR-122 stimulated the expression of hepatocyte-specific genes and most LETFs, including HNF6. This indicates that HNF6 and miR-122 form a positive feedback loop. Stimulation of hepatocyte differentiation by miR-122 was lost in HNF6-null mice, revealing that a transcription factor can mediate microRNA function. All hepatocyte-specific genes whose expression was stimulated by miR-122 bound HNF6 in vivo, confirming their direct regulation by this factor. CONCLUSIONS Hepatocyte differentiation is directed by a positive feedback loop that includes a transcription factor (HNF6) and a microRNA (miR-122) that are specifically expressed in liver. These findings could lead to methods to induce differentiation of hepatocytes in vitro and improve our understanding of liver cell dedifferentiation in pathologic conditions.


Journal of Biological Chemistry | 1999

OC-2, a Novel Mammalian Member of the ONECUT Class of Homeodomain Transcription Factors Whose Function in Liver Partially Overlaps with That of Hepatocyte Nuclear Factor-6

Patrick Jacquemin; Vincent Lannoy; Guy G. Rousseau; Frédéric P. Lemaigre

Transcription factors of the ONECUT class, whose prototype is hepatocyte nuclear factor (HNF)-6, are characterized by the presence of a single cut domain and by a peculiar homeodomain (Lannoy, V. J., Bürglin, T. R., Rousseau, G. G., and Lemaigre, F. P. (1998) J. Biol. Chem. 273, 13552–13562). We report here the identification and characterization of human OC-2, the second mammalian member of this class. TheOC-2 gene is located on human chromosome 18. The distribution of OC-2 mRNA in humans is tissue-restricted, the strongest expression being detected in the liver and skin. The amino acid sequence of OC-2 contains several regions of high similarity to HNF-6. The recognition properties of OC-2 for binding sites present in regulatory regions of liver-expressed genes differ from, but overlap with, those of HNF-6. Like HNF-6, OC-2 stimulates transcription of the hnf-3βgene in transient transfection experiments, suggesting that OC-2 participates in the network of transcription factors required for liver differentiation and metabolism.


Journal of Biological Chemistry | 1997

Human TEF-5 Is Preferentially Expressed in Placenta and Binds to Multiple Functional Elements of the Human Chorionic Somatomammotropin-B Gene Enhancer

Patrick Jacquemin; Joseph A. Martial; Irwin Davidson

We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhansons of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/chorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.


Developmental Dynamics | 1998

Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro

Patrick Jacquemin; Vincent Sapin; E. Alsat; Danièle Evain-Brion; Pascal Dollé; Irwin Davidson

We describe the molecular cloning of murine (m) Transcriptional Enhancer Factor (TEF)‐5 belonging to the TEF family of transcription factors. We show that mTEF‐5 is specifically expressed in trophoblast giant cells and other extra‐embryonic structures at early stages of development. At later stages, mTEF‐5 is specifically expressed in the labyrinthine region of the placenta and in several embryonic tissues. We further show that the other mTEFs are differentially expressed in extraembryonic structures and in the mature placenta. Interestingly, human (h)TEF‐5 is specifically expressed in the differentiated syncytiotrophoblast of the human term placenta and its expression is upregulated during the differentiation of cytotrophoblasts to syncytiotrophoblast in vitro, whereas that of hTEF‐1 is down‐regulated. Together with previous results describing hTEF‐binding sites in the human placental lactogen‐B gene enhancer, these novel observations support a role for hTEF‐5 in the regulation of this gene. We further propose that the hTEF factors may play a more general role in placental gene regulation and development. Dev. Dyn. 1998; 212:423–436.


Gut | 2012

Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia

Pierre-Paul Prévot; Alexandru Simion; Adrien Grimont; Marta Colletti; Abed Khalaileh; Géraldine Van den Steen; Christine C. Sempoux; Xiaobo Xu; Véronique Roelants; Jacob Hald; Luc Bertrand; Harry Heimberg; Stephen F. Konieczny; Yuval Dor; Frédéric P. Lemaigre; Patrick Jacquemin

Objective Growing evidence suggests that a phenotypic switch converting pancreatic acinar cells to duct-like cells can lead to pancreatic intraepithelial neoplasia and eventually to invasive pancreatic ductal adenocarcinoma. Histologically, the onset of this switch is characterised by the co-expression of acinar and ductal markers in acini, a lesion called acinar-to-ductal metaplasia (ADM). The transcriptional regulators required to initiate ADM are unknown, but need to be identified to characterise the regulatory networks that drive ADM. In this study, the role of the ductal transcription factors hepatocyte nuclear factor 6 (HNF6, also known as Onecut1) and SRY-related HMG box factor 9 (Sox9) in ADM was investigated. Design Expression of HNF6 and Sox9 was measured by immunostaining in normal and diseased human pancreas. The function of the factors was tested in cultured cells and in mouse models of ADM by a combination of gain and loss of function experiments. Results Expression of HNF6 and Sox9 was ectopically induced in acinar cells in human ADM as well as in mouse models of ADM. HNF6 and, to a lesser extent, Sox9 were required for repression of acinar genes, for modulation of ADM-associated changes in cell polarity and for activation of ductal genes in metaplastic acinar cells. Conclusions HNF6 and Sox9 are new biomarkers of ADM and constitute candidate targets for preventive treatment in cases when ADM may lead to cancer. This work also shows that ectopic activation of transcription factors may underlie metaplastic processes occurring in other organs.


Biochemical Journal | 2006

Increased protein glycation in fructosamine-3-kinase-deficient mice

Maria Veiga da-Cunha; Patrick Jacquemin; Ghislain Delpierre; Catherine Godfraind; Ivan Théate; Didier Vertommen; Frédéric Clotman; Frédéric P. Lemaigre; Olivier Devuyst; Emile Van Schaftingen

Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-epsilon-lysines and which is potentially involved in protein repair. Fn3k-/- mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/- mice. Other intracellular proteins were also significantly more glycated in Fn3k-/- mice in erythrocytes (1.8-2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2-1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-epsilon-lysine was 10-20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k-/- mice, indicating that food is the main source of urinary fructose-epsilon-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-epsilon-lysine. However, in starved animals, the urinary excretion of fructose-epsilon-lysine was 2.5-fold higher in Fn3k-/- mice compared with Fn3k+/+ or Fn3k+/- mice. Furthermore, a marked increase (5-13-fold) was observed in the concentration of free fructose-epsilon-lysine in tissues of fed Fn3k-/- mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-epsilon-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-epsilon-lysine.


Gene Expression Patterns | 2003

Cloning and embryonic expression pattern of the mouse Onecut transcription factor OC-2.

Patrick Jacquemin; Christophe E. Pierreux; Sébastien Fierens; Jonathan van Eyll; Frédéric P. Lemaigre; Guy G. Rousseau

Onecut (OC) transcription factors are evolutionarily conserved proteins with important developmental functions. They contain a bipartite DNA-binding domain composed of a single cut domain associated with a divergent homeodomain. The human genome contains three Onecut paralogues, Hnf6 (also called Oc1), Oc2 and Oc3. We describe here the cloning of mouse (m) OC-2 and its expression pattern in the mouse embryo. The mOc2 gene was localized on chromosome 18. Analysis of the mOC-2 amino acid sequence revealed overall identities of 67% with mHNF-6 and of 56% with mOC-3, and the presence of functional domains delineated earlier in HNF-6. The sequence of the 153 residue-long cut-homeodomain was very conserved, as it was 92% identical to that of mHNF-6 and 89% identical to that of mOC-3. In situ hybridization showed expression of mOc2 in the developing nervous system and gut endoderm. Like Hnf6, Oc2 was expressed in developing liver and pancreas. As many genes that are targeted by Onecut factors are recognized by both OC-2 and HNF-6, this overlap of expression patterns may have functional implications.


Journal of Biological Chemistry | 2004

The transcription factor hepatocyte nuclear factor-6/Onecut-1 controls the expression of its paralog Onecut-3 in developing mouse endoderm.

Christophe E. Pierreux; Vinciane Vanhorenbeeck; Patrick Jacquemin; Frédéric P. Lemaigre; Guy G. Rousseau

During development, the endoderm gives rise to several organs, including the pancreas and liver. This differentiation process requires spatial and temporal regulation of gene expression in the endoderm by a network of tissue-specific transcription factors whose elucidation is far from complete. These factors include the Onecut protein hepatocyte nuclear factor-6 (HNF-6), which controls pancreas and liver development as shown in our previous work on Hnf6 knock-out embryos. In mammals, HNF-6 has two paralogs, Onecut-2 (OC-2) and OC-3, whose patterns of expression in the adult overlap with that of HNF-6. In the present work, we examine the expression profile of the three Onecut factors in the developing mouse endoderm. We show that HNF-6, OC-2, and OC-3 are expressed sequentially, which defines new steps in endoderm differentiation. By analyzing Hnf6 knock-out embryos we find that HNF-6 is required for expression of the Oc3 gene in the endoderm. We show that OC-3 colocalizes with HNF-6 in the endoderm and in embryonic pancreas and liver. Based on transfection, chromatin immunoprecipitation, and whole embryo electroporation experiments, we demonstrate that HNF-6 can bind to and stimulate the expression of the Oc3 gene. This study identifies a regulatory cascade between two paralogous transcription factors, sheds new light on the interpretation of the Hnf6 knock-out phenotype, and broadens the transcription factors network operating during development of the endoderm, liver, and pancreas.

Collaboration


Dive into the Patrick Jacquemin's collaboration.

Top Co-Authors

Avatar

Frédéric P. Lemaigre

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Guy G. Rousseau

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe E. Pierreux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Cécile Augereau

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Frédéric Clotman

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Géraldine Van den Steen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Younes Achouri

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Alexandra Belayew

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge