Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe E. Pierreux is active.

Publication


Featured researches published by Christophe E. Pierreux.


Molecular and Cellular Biology | 2000

Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

Christophe E. Pierreux; Francisco J. Nicolás; Caroline S. Hill

ABSTRACT Smad4 plays a pivotal role in all transforming growth factor β (TGF-β) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-β signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-β signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-β signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.


Gastroenterology | 2009

Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.

Aline Antoniou; Peggy Raynaud; Sabine Cordi; Yiwei Zong; François Tronche; Ben Z. Stanger; Patrick Jacquemin; Christophe E. Pierreux; Frédéric Clotman; Frédéric P. Lemaigre

BACKGROUND & AIMS A number of diseases are characterized by defective formation of the intrahepatic bile ducts. In the embryo, hepatoblasts differentiate to cholangiocytes, which give rise to the bile ducts. Here, we investigated duct development in mouse liver and characterized the role of the SRY-related HMG box transcription factor 9 (SOX9). METHODS We identified SOX9 as a new biliary marker and used it in immunostaining experiments to characterize bile duct morphogenesis. The expression of growth factors was determined by in situ hybridization and immunostaining, and their role was studied on cultured hepatoblasts. SOX9 function was investigated by phenotyping mice with a liver-specific inactivation of Sox9. RESULTS Biliary tubulogenesis started with formation of asymmetrical ductal structures, lined on the portal side by cholangiocytes and on the parenchymal side by hepatoblasts. When the ducts grew from the hilum to the periphery, the hepatoblasts lining the asymmetrical structures differentiated to cholangiocytes, thereby allowing formation of symmetrical ducts lined only by cholangiocytes. We also provide evidence that transforming growth factor-beta promotes differentiation of the hepatoblasts lining the asymmetrical structures. In the absence of SOX9, the maturation of asymmetrical structures into symmetrical ducts was delayed. This was associated with abnormal expression of CCAAT/Enhancer Binding Protein alpha and Homolog of Hairy/Enhancer of Split-1, as well as of the transforming growth factor-beta receptor type II, which are regulators of biliary development. CONCLUSIONS Our results suggest that biliary development proceeds according to a new mode of tubulogenesis characterized by transient asymmetry and whose timing is controlled by SOX9.


Gastroenterology | 2012

A Feedback Loop Between the Liver-Enriched Transcription Factor Network and Mir-122 Controls Hepatocyte Differentiation

Ilaria Laudadio; Isabelle Manfroid; Younes Achouri; Dominic Schmidt; Michael D. Wilson; Sabine Cordi; Lieven Thorrez; Laurent Knoops; Patrick Jacquemin; Frans Schuit; Christophe E. Pierreux; Duncan T. Odom; Bernard Peers; Frédéric P. Lemaigre

BACKGROUND & AIMS Hepatocyte differentiation is controlled by liver-enriched transcription factors (LETFs). We investigated whether LETFs control microRNA expression during development and whether this control is required for hepatocyte differentiation. METHODS Using in vivo DNA binding assays, we identified miR-122 as a direct target of the LETF hepatocyte nuclear factor (HNF) 6. The role and mechanisms of the HNF6-miR-122 gene cascade in hepatocyte differentiation were studied in vivo and in vitro by gain-of-function and loss-of-function experiments, using developing mice and zebrafish as model organisms. RESULTS HNF6 and its paralog Onecut2 are strong transcriptional stimulators of miR-122 expression. Specific levels of miR-122 were required for proper progression of hepatocyte differentiation; miR-122 stimulated the expression of hepatocyte-specific genes and most LETFs, including HNF6. This indicates that HNF6 and miR-122 form a positive feedback loop. Stimulation of hepatocyte differentiation by miR-122 was lost in HNF6-null mice, revealing that a transcription factor can mediate microRNA function. All hepatocyte-specific genes whose expression was stimulated by miR-122 bound HNF6 in vivo, confirming their direct regulation by this factor. CONCLUSIONS Hepatocyte differentiation is directed by a positive feedback loop that includes a transcription factor (HNF6) and a microRNA (miR-122) that are specifically expressed in liver. These findings could lead to methods to induce differentiation of hepatocytes in vitro and improve our understanding of liver cell dedifferentiation in pathologic conditions.


Molecular Microbiology | 2002

Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus

Anne-Flore Bellefontaine; Christophe E. Pierreux; Pascal Mertens; Jean Vandenhaute; Jean-Jacques Letesson; Xavier De Bolle

CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.


Journal of The American Society of Nephrology | 2010

ZONAB Promotes Proliferation and Represses Differentiation of Proximal Tubule Epithelial Cells

Wânia Rezende Wr Lima; Kleber Simônio Parreira; Olivier Devuyst; Adrian Caplanusi; Francisca N’Kuli; Benoit Marien; Patrick Van Der Smissen; Pedro M.S. Alves; Pierre J. Verroust; Erik Ilsø Christensen; Fabiola Terzi; Karl Matter; Maria S. Balda; Christophe E. Pierreux; Pierre J. Courtoy

Epithelial polarization modulates gene expression. The transcription factor zonula occludens 1 (ZO-1)-associated nucleic acid binding protein (ZONAB) can shuttle between tight junctions and nuclei, promoting cell proliferation and expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), but whether it also represses epithelial differentiation is unknown. Here, during mouse kidney ontogeny and polarization of proximal tubular cells (OK cells), ZONAB and PCNA levels decreased in parallel and inversely correlated with increasing apical differentiation, reflected by expression of megalin/cubilin, maturation of the brush border, and extension of the primary cilium. Conversely, ZONAB reexpression and loss of apical differentiation markers provided a signature for renal clear cell carcinoma. In confluent OK cells, ZONAB overexpression increased proliferation and PCNA while repressing megalin/cubilin expression and impairing differentiation of the brush border and primary cilium. Reporter and chromatin immunoprecipitation assays demonstrated that megalin and cubilin are ZONAB target genes. Sparsely plated OK cells formed small islands composed of distinct populations: Cells on the periphery, which lacked external tight junctions, strongly expressed nuclear ZONAB, proliferated, and failed to differentiate; central cells, surrounded by continuous junctions, lost nuclear ZONAB, stopped proliferating, and engaged in apical differentiation. Taken together, these data suggest that ZONAB is an important component of the mechanisms that sense epithelial density and participates in the complex transcriptional networks that regulate the switch between proliferation and differentiation.


Hepatology | 2011

A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis

Peggy Raynaud; Joshua M. Tate; Céline Callens; Sabine Cordi; Patrick Vandersmissen; Rodolphe Carpentier; Christine Sempoux; Olivier Devuyst; Christophe E. Pierreux; Pierre J. Courtoy; Karin Dahan; Katty Delbecque; Sébastien Lepreux; Marco Pontoglio; Lisa M. Guay-Woodford; Frédéric P. Lemaigre

Ductal plate malformations (DPMs) are developmental anomalies considered to result from lack of ductal plate remodeling during bile duct morphogenesis. In mice, bile duct development is initiated by the formation of primitive ductal structures lined by two cell types, namely ductal plate cells and hepatoblasts. During ductal plate remodeling, the primitive ductal structures mature to ducts as a result from differentiation of the ductal plate cells and hepatoblasts to cholangiocytes. Here, we report this process is conserved in human fetal liver. These findings prompted us to evaluate how DPMs develop in three mouse models, namely mice with livers deficient in hepatocyte nuclear factor 6 (HNF6), HNF1β, or cystin‐1 (cpk [congenital polycystic kidney] mice). Human liver from a patient with a HNF1B/TCF2 mutation, and from fetuses affected with autosomal recessive polycystic kidney disease (ARPKD) were also analyzed. Despite the epistatic relationship between HNF6, HNF1β, and cystin‐1, the three mouse models displayed distinct morphogenic mechanisms of DPM. They all developed biliary cysts lined by cells with abnormal apicobasal polarity. However, the absence of HNF6 led to an early defect in ductal plate cell differentiation. In HNF1β‐deficient liver, maturation of the primitive ductal structures was impaired. Normal differentiation and maturation but abnormal duct expansion was apparent in cpk mouse livers and in human fetal ARPKD. Conclusion: DPM is the common endpoint of distinct defects initiated at distinct stages of bile duct morphogenesis. Our observations provide a new pathogenic classification of DPM. (HEPATOLOGY 2011;)


Diabetologia | 2002

Liver glucokinase gene expression is controlled by the onecut transcription factor hepatocyte nuclear factor-6.

Vincent Lannoy; J F Decaux; Christophe E. Pierreux; Frédéric P. Lemaigre; Guy G. Rousseau

HeadingAbstract Aims/hypothesis. Glucokinase plays a key role in glucose homeostasis and the expression of its gene is differentially regulated in pancreatic beta cells and in the liver through distinct promoters. The factors that determine the tissue-specific expression of the glucokinase gene are not known. Putative binding sites for hepatocyte nuclear factor (HNF)-6, the prototype of the ONECUT family of transcription factors, are present in the hepatic promoter of the glucokinase gene and in diabetic hnf6 knockout mice. We hypothesized that HNF-6 controls the activity of the hepatic glucokinase promoter. Methods. We tested the binding of recombinant HNF-6 to DNA sequences from the mouse hepatic glucokinase promoter in vitro and the effect of HNF-6 on promoter activity in transfected cells. We investigated in vivo the role of HNF-6 in mice by examining the effect of inactivating the hnf6 gene on glucokinase gene-specific deoxyribonuclease I hypersensitive sites in liver chromatin and on liver glucokinase mRNA concentration. Results. HNF-6 bound to the hepatic promoter of the glucokinase gene and stimulated its activity. Inactivation of the hnf6 gene did not modify the pattern of deoxyribonuclease I hypersensitive sites but was associated with a decrease of liver glucokinase mRNA to half the control value. Conclusions/interpretation. Although HNF-6 is not required to open chromatin of the hepatic promoter of the glucokinase gene, it stimulates transcription of the glucokinase gene in the liver. This could partly explain the diabetes observed in hnf6 knockout mice.


Developmental Biology | 2010

Epithelial: Endothelial cross-talk regulates exocrine differentiation in developing pancreas

Christophe E. Pierreux; Sabine Cordi; Anne-Christine Hick; Younes Achouri; Carmen Ruiz de Almodovar; Pierre-Paul Prévot; Pierre J. Courtoy; Peter Carmeliet; Frédéric P. Lemaigre

Endothelial cells are required to initiate pancreas development from the endoderm. They also control the function of endocrine islets after birth. Here we investigate in developing pancreas how the endothelial cells become organized during branching morphogenesis and how their development affects pancreatic cell differentiation. We show that endothelial cells closely surround the epithelial bud at the onset of pancreas morphogenesis. During branching morphogenesis, the endothelial cells become preferentially located near the central (trunk) epithelial cells and remain at a distance from the branch tips where acinar cells differentiate. This correlates with predominant expression of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) in trunk cells. In vivo ablation of VEGF-A expression by pancreas-specific inactivation of floxed Vegfa alleles results in reduced endothelial development and in excessive acinar differentiation. On the contrary, acinar differentiation is repressed when endothelial cells are recruited around tip cells that overexpress VEGF-A. Treatment of embryonic day 12.5 explants with VEGF-A or with VEGF receptor antagonists confirms that acinar development is tightly controlled by endothelial cells. We also provide evidence that endothelial cells repress the expression of Ptf1a, a transcription factor essential for acinar differentiation, and stimulate the expression of Hey-1 and Hey-2, two repressors of Ptf1a activity. In explants, we provide evidence that VEGF-A signaling is required, but not sufficient, to induce endocrine differentiation. In conclusion, our data suggest that, in developing pancreas, epithelial production of VEGF-A determines the spatial organization of endothelial cells which, in turn, limit acinar differentiation of the epithelium.


Journal of Cell Science | 2004

Shh-dependent differentiation of intestinal tissue from embryonic pancreas by activin A

Jonathan van Eyll; Christophe E. Pierreux; Frédéric P. Lemaigre; Guy G. Rousseau

The pancreas develops from the endoderm to give rise to ducts, acini and islets of Langerhans. This process involves extracellular signals of the Transforming Growth Factor β (TGFβ) family. The aim of this work was to study the effects of activin A, a member of this family, whose potential role in pancreas differentiation is controversial. To this end, we used pancreatic explants from E12.5 mouse embryos. In culture these explants exhibited spontaneous growth, epithelial morphogenesis and endocrine and exocrine differentiation. Exposure to activin A did not affect exocrine or endocrine differentiation. Surprisingly, activin A induced in the explants the appearance of a large contractile structure surrounded by a cylindrical epithelium, a thick basal lamina and a smooth muscle layer. This structure, the formation of which was prevented by follistatin, was typical of an intestinal wall. Consistent with this interpretation, activin A rapidly induced in the explants the mRNAs for fatty acid binding proteins (FABPs), which are markers of the intestine, but not of the pancreas. We also found that induction of the FABPs was preceded by induction of Sonic hedgehog (Shh), a known inducer of intestinal differentiation in the endoderm. Activin B induced neither Shh nor intestinal differentiation. The activin A-mediated intestinal differentiation was blocked by cyclopamine, an inhibitor of Hedgehog signaling, and it was mimicked by Shh. We conclude that activin A does not appear to affect the exocrine or endocrine components of the pancreas, but that it can promote differentiation of pancreatic tissue into intestine via a Shh-dependent mechanism. These findings illustrate the plasticity of differentiation programs in response to extracellular signals in the pancreas and they shed new light on the regulation of pancreas and intestinal development.


Journal of Biological Chemistry | 2000

Transcriptional Stimulation by Hepatocyte Nuclear Factor-6 TARGET-SPECIFIC RECRUITMENT OF EITHER CREB-BINDING PROTEIN (CBP) or p300/CBP-ASSOCIATED FACTOR (p/CAF)

Vincent Lannoy; Annie Rodolosse; Christophe E. Pierreux; Guy G. Rousseau; Frédéric P. Lemaigre

Transcription factors of the ONECUT class, whose prototype is HNF-6, contain a single cut domain and a divergent homeodomain characterized by a phenylalanine at position 48 and a methionine at position 50. The cut domain is required for DNA binding. The homeodomain is required either for DNA binding or for transcriptional stimulation, depending on the target gene. Transcriptional stimulation by the homeodomain involves the F48M50 dyad. We investigate here how HNF-6 stimulates transcription. We identify transcriptionally active domains of HNF-6 that are conserved among members of the ONECUT class and show that the cut domain of HNF-6 participates to DNA binding and, via a LXXLL motif, to transcriptional stimulation. We also demonstrate that, on a target gene to which HNF-6 binds without requirement for the homeodomain, transcriptional stimulation involves an interaction of HNF-6 with the coactivator CREB-binding protein (CBP). This interaction depends both on the LXXLL motif of the cut domain and on the F48M50 dyad of the homeodomain. On a target gene for which the homeodomain is required for DNA binding, but not for transcriptional stimulation, HNF-6 interacts with the coactivator p300/CBP-associated factor but not with CBP. These data show that a transcription factor can act via different, sequence-specific, mechanisms that combine distinct modes of DNA binding with the use of different coactivators.

Collaboration


Dive into the Christophe E. Pierreux's collaboration.

Top Co-Authors

Avatar

Frédéric P. Lemaigre

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Guy G. Rousseau

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pierre J. Courtoy

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Patrick Jacquemin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Patrick Van Der Smissen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Sabine Cordi

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Frédéric Clotman

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virginie Janssens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Anne-Christine Hick

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge