Patrizia Porazzi
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrizia Porazzi.
Molecular and Cellular Endocrinology | 2009
Patrizia Porazzi; Davide Calebiro; Francesca Benato; Natascia Tiso; Luca Persani
Thyroid development has been intensively studied in the mouse, where it closely recapitulates the human situation. Despite the lack of a compact thyroid gland, the zebrafish thyroid tissue originates from the pharyngeal endoderm and the main genes involved in its patterning and early development are conserved between zebrafish and mammals. In recent years, the zebrafish has become a powerful model not only for the developmental biology studies, but also for large-scale genetic analyses and drug screenings, mostly thanks to the ease with which its embryos can be manipulated and to its translucent body, which allows in vivo imaging. In this review we will provide an overview of the current knowledge of thyroid gland origin and differentiation in the zebrafish. Moreover, we will consider the action of thyroid hormones and some aspects related to endocrine disruptors.
Cell Death and Disease | 2013
Elena Rampazzo; Luca Persano; Francesca Pistollato; Enrico Moro; Chiara Frasson; Patrizia Porazzi; A. Della Puppa; Silvia Bresolin; Giusy Battilana; S Indraccolo; G te Kronnie; Francesco Argenton; Natascia Tiso; G Basso
One of the biggest challenges in tumour research is the possibility to reprogram cancer cells towards less aggressive phenotypes. In this study, we reprogrammed primary Glioblastoma multiforme (GBM)-derived cells towards a more differentiated and less oncogenic phenotype by activating the Wnt pathway in a hypoxic microenvironment. Hypoxia usually correlates with malignant behaviours in cancer cells, but it has been recently involved, together with Wnt signalling, in the differentiation of embryonic and neural stem cells. Here, we demonstrate that treatment with Wnt ligands, or overexpression of β-catenin, mediate neuronal differentiation and halt proliferation in primary GBM cells. An hypoxic environment cooperates with Wnt-induced differentiation, in line with our finding that hypoxia inducible factor-1α (HIF-1α) is instrumental and required to sustain the expression of β-catenin transcriptional partners TCF-1 and LEF-1. In addition, we also found that Wnt-induced GBM cell differentiation inhibits Notch signalling, and thus gain of Wnt and loss of Notch cooperate in the activation of a pro-neuronal differentiation program. Intriguingly, the GBM sub-population enriched of cancer stem cells (CD133+ fraction) is the primary target of the pro-differentiating effects mediated by the crosstalk between HIF-1α, Wnt, and Notch signalling. By using zebrafish transgenics and mutants as model systems to visualize and manipulate in vivo the Wnt pathway, we confirm that Wnt pathway activation is able to promote neuronal differentiation and inhibit Notch signalling of primary human GBM cells also in this in vivo set-up. In conclusion, these findings shed light on an unsuspected crosstalk between hypoxia, Wnt and Notch signalling in GBM, and suggest the potential to manipulate these microenvironmental signals to blunt GBM malignancy.
Journal of Endocrinological Investigation | 2010
Davide Calebiro; Patrizia Porazzi; Marco Bonomi; Simonetta Lisi; A. Grindati; D. De Nittis; Laura Fugazzola; Michele Marinò; Guido Bottà; Luca Persani
Background: Mutations in the SLC26A4 gene, coding for the anion transporter pendrin, are responsible for Pendred syndrome, characterized by congenital sensorineural deafness and dyshormonogenic goiter. The physiological role of pendrin in the thyroid is still unclear and the lack of a thyroid phenotype in some patients with SLC26A4 mutations and in Slc26a4 (-/-) mice indicate the existence of environmental or individual modifiers able to compensate for pendrin inactivation in the thyroid. Since pendrin can transport iodide in vitro, variations in iodide supply have been claimed to account for the thyroid phenotype associated with pendrin defects. Aim: The Slc26a4 (-/-) mouse model was used to test the hypothesis that iodide supply may influence the penetrance and expressivity of SLC26A4 mutations. Materials and methods: Slc26a4 (-/-) and (+/+) mice were fed up to 6 months on a standard or low iodine diet and were evaluated for thyroid structural abnormalities or biochemical hypothyroidism. Results: A 27-fold iodide restriction induced similar modifications in thyroid histology, but no differences in thyroid size, T4 or TSH levels were observed between between Slc26a4 (-/-) and (+/+) mice, either in standard conditions and during iodine restriction. Conclusions: Iodide restriction is not able to induce a thyroid phenotype in Slc26a4 (-/-) mice. These experimental data, together with those coming from a review of familial Pendred cases leaving in regions either with low or sufficient iodide supply, support the idea that the expression of thyroid phenotype in Pendred syndrome is more powerfully influenced by individual factors than by dietary iodide.
Endocrinology | 2012
Patrizia Porazzi; Federica Marelli; Francesca Benato; Tiziana de Filippis; Davide Calebiro; Francesco Argenton; Natascia Tiso; Luca Persani
The mechanisms underlying the early steps of thyroid development are largely unknown. In search for novel candidate genes implicated in thyroid function, we performed a gene expression analysis on thyroid cells revealing that TSH regulates the expression of several elements of the Notch pathway, including the ligand Jagged1. Because the Notch pathway is involved in cell-fate determination of several foregut-derived endocrine tissues, we tested its contribution in thyroid development using the zebrafish, a teleost model recapitulating the mammalian molecular events during thyroid development. Perturbing the Notch signaling (e.g. mib mutants, γ-secretase inhibition, or Notch intracellular domain overexpression), we obtained evidence that this pathway has a biological role during the earlier phases of thyroid primordium induction, limiting the number of cells that proceed to a specialized fate and probably involving actions from surrounding tissues. Moreover, we were able to confirm the expression of Jagged1 during different phases of zebrafish thyroid development, as well as in mouse and human thyroid tissues. The two orthologues to the single jagged1 gene (JAG1) in humans, jag1a and jag1b, are expressed with different spatiotemporal patterns in the developing zebrafish thyroid. Both jag1a and jag1b morphants, as well as jag1b mutant fish line, display thyroid hypoplasia and impaired T(4) production; this thyroid phenotype was rescued by coinjection of human JAG1 mRNA. In conclusion, Notch pathway is involved in the early steps of thyroid morphogenesis, and Jagged1-Notch signal is required for zebrafish thyroid development and function. Thus, genetic alterations affecting the Notch pathway may confer susceptibility for thyroid dysgenesis.
The Journal of Clinical Endocrinology and Metabolism | 2011
Elena Passeri; Marcello Frigerio; T. De Filippis; Rea Valaperta; P. Capelli; Elena Costa; Laura Fugazzola; Federica Marelli; Patrizia Porazzi; C. Arcidiacono; M. Carminati; Bruno Ambrosi; Luca Persani; Sabrina Corbetta
CONTEXT Newborns with congenital hypothyroidism (CH) have an increased risk for congenital heart defects (CHD) due to a common embryonic developmental program between thyroid gland and heart and great vessels. OBJECTIVE Our objective was to investigate the prevalence and origin of thyroid disorders in young patients with CHD. DESIGN AND SETTING We conducted a prospective observational study between January 2007 and January 2009 in academic Pediatric Cardiosurgery and Endocrinology. PATIENTS Patients included 324 children (164 males, 160 females, aged 0.2-15.4 yrs) with CHD. INTERVENTION Subjects underwent hormonal and genetic screening. MAIN OUTCOME MEASURES Serum TSH and thyroid hormone levels were assessed. RESULTS Two CHD patients were diagnosed with CH at the neonatal screening (1:162). Mild hypothyroidism (serum TSH > 4.0 μU/ml) was diagnosed and confirmed 6 months later [TSH = 5.4 ± 1.5 μU/ml; free T(4) = 1.3 ± 0.2 ng/dl (normal values 0.8-1.9)] in 37 children (11.5%) who were negative at neonatal screening. Hypothyroidism was not related to type of CHD, whereas TSH levels positively correlated with serum N-terminal pro-type B natriuretic peptide levels. Biochemical and ultrasound findings consistent with thyroid autoimmunity were present in three of 37 hypothyroid children (8.1%). One patient had hemiagenesis (2.7%). Variations in candidate genes were screened in CHD patients. NKX2.5 coding sequence was normal in all samples. A 3-Mb microdeletion in 22q11.2 was detected in three patients (8.3%), whereas only known polymorphisms were identified in TBX1 coding sequence. CONCLUSIONS CHD patients have an increased risk for both CH (10-fold higher) and acquired mild hypothyroidism (3-fold higher). Unrecognized mild hypothyroidism may negatively affect the outcome of CHD children, suggesting that thyroid function should be repeatedly checked. Thyroid autoimmunity and 22q11.2 microdeletions account for small percentages of these cases, and still unknown mechanisms underline such a strong association.
The Journal of Clinical Endocrinology and Metabolism | 2016
Tiziana de Filippis; Federica Marelli; Gabriella Nebbia; Patrizia Porazzi; Sabrina Corbetta; Laura Fugazzola; Roberto Gastaldi; Maria Cristina Vigone; Roberta Biffanti; Daniela Frizziero; Luana Mandarà; Paolo Prontera; Mariacarolina Salerno; Mohamad Maghnie; Natascia Tiso; G. Radetti; Giovanna Weber; Luca Persani
CONTEXT The pathogenesis of congenital hypothyroidism (CH) is still largely unexplained. We previously reported that perturbations of the Notch pathway and knockdown of the ligand jagged1 cause a hypothyroid phenotype in the zebrafish. Heterozygous JAG1 variants are known to account for Alagille syndrome type 1 (ALGS1), a rare multisystemic developmental disorder characterized by variable expressivity and penetrance. OBJECTIVE Verify the involvement of JAG1 variants in the pathogenesis of congenital thyroid defects and the frequency of unexplained hypothyroidism in a series of ALGS1 patients. DESIGN, SETTINGS, AND PATIENTS A total of 21 young ALGS1 and 100 CH unrelated patients were recruited in academic and public hospitals. The JAG1 variants were studied in vitro and in the zebrafish. RESULTS We report a previously unknown nonautoimmune hypothyroidism in 6/21 ALGS1 patients, 2 of them with thyroid hypoplasia. We found 2 JAG1 variants in the heterozygous state in 4/100 CH cases (3 with thyroid dysgenesis, 2 with cardiac malformations). Five out 7 JAG1 variants are new. Different bioassays demonstrate that the identified variants exhibit a variable loss of function. In zebrafish, the knock-down of jag1a/b expression causes a primary thyroid defect, and rescue experiments of the hypothyroid phenotype with wild-type or variant JAG1 transcripts support a role for JAG1 variations in the pathogenesis of the hypothyroid phenotype seen in CH and ALGS1 patients. CONCLUSIONS clinical and experimental data indicate that ALGS1 patients have an increased risk of nonautoimmune hypothyroidism, and that variations in JAG1 gene can contribute to the pathogenesis of variable congenital thyroid defects, including CH.
FEBS Journal | 2011
Natascia Tiso; Elena Rampazzo; Luca Persano; Francesca Pistollato; Enrico Moro; Patrizia Porazzi; Alessandro Della Puppa; Silvia Bresolin; Geertrudy Te Kronnie; G Del Moro; Renato Scienza; Domenico D'Avella; Francesco Argenton; Giuseppe Basso
Resumen del poster presentado al 36th FEBS Congress celebrado en Torino (Italia) del 25 al 30 de Junio de 2011.-- et al.
Molecular Genetics and Genomics | 2013
Enrico Moro; Andrea Vettori; Patrizia Porazzi; Marco Schiavone; Elena Rampazzo; Alessandro Casari; Olivier Ek; Nicola Facchinello; Matteo Astone; Ilaria Zancan; Martina Milanetto; Natascia Tiso; Francesco Argenton
Molecular Endocrinology | 2006
Davide Calebiro; Tiziana de Filippis; Simona Lucchi; Fernando O. Martinez; Patrizia Porazzi; Roberta Trivellato; Massimo Locati; Paolo Beck-Peccoz; Luca Persani
Cell Death and Disease | 2013
Elena Rampazzo; Luca Persano; Francesca Pistollato; Enrico Moro; Chiara Frasson; Patrizia Porazzi; A. Della Puppa; Silvia Bresolin; Giusy Battilana; S Indraccolo; G te Kronnie; Francesco Argenton; Natascia Tiso; G Basso