Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Wilson is active.

Publication


Featured researches published by Paul A. Wilson.


Monthly Notices of the Royal Astronomical Society | 2013

HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

David K. Sing; A. Lecavelier des Etangs; Jonathan J. Fortney; Adam Burrows; F. Pont; Hannah R. Wakeford; G. E. Ballester; N. Nikolov; Gregory W. Henry; S. Aigrain; Drake Deming; T. Evans; N. P. Gibson; Catherine M. Huitson; Heather A. Knutson; A. Vidal-Madjar; Paul A. Wilson; M.H. Williamson; Kevin J. Zahnle

We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900–10 300 A which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12As stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanets density is ∼20 per cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanets atmosphere, as there are no signs of the molecules characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = −3528 ± 660 K, where T is the atmospheric temperature. Rayleigh scattering (α = −4) is among the best-fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near blackbody nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold trap is an important effect for very hot Jupiters. These findings indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.


Monthly Notices of the Royal Astronomical Society | 2013

An HST Optical to Near-IR Transmission Spectrum of the Hot Jupiter WASP-19b: Detection of Atmospheric Water and Likely Absence of TiO

Catherine M. Huitson; David K. Sing; F. Pont; Jonathan J. Fortney; Adam Burrows; Paul A. Wilson; G. E. Ballester; N. Nikolov; N. P. Gibson; Drake Deming; S. Aigrain; T. Evans; Gregory W. Henry; A. Lecavelier des Etangs; A. Vidal-Madjar; Kevin J. Zahnle

We measure the transmission spectrum of WASP-19b from three transits using low-resolution optical spectroscopy from the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). The STIS spectra cover a wavelength range of 0.29-1.03 µm, with resolving power R = 500. The optical data are combined with archival near-infrared data from the HST Wide Field Camera 3 (WFC3) G141 grism, covering the wavelength range from 1.087 to 1.687 µm, with resolving power R = 130. We reach S/N levels between 3,000 and 11,000 in 0.1 µm bins when measuring the transmission spectra from 0.53-1.687 µm. WASP-19 is known to be a very active star, with the optical stellar flux varying by a few per cent over time. We correct the transit light curves for the effects of stellar activity using ground-based activity monitoring with the Cerro Tololo Inter-American Observatory (CTIO). While we were not able to construct a transmission spectrum using the blue optical data because of the presence of large occulted star spots, we were able to use the spot crossings to help constrain the mean stellar spot temperature. To search for predicted features in the hot-Jupiter atmosphere, in addition to the transmission spectrum we also define spectral indices for differential radius (�RP/R⋆) measurements to specifically search for the presence of TiO and alkali line features. Our measurements rule out TiO features predicted for a planet of WASP-19b’s equilibrium temperature (2050 K) in the transmission spectrum at the 2.7-2.9 σ confidence level, depending on atmospheric model formalism. The WFC3 transmission spectrum shows strong absorption features due to the presence of H2O, which is detected at the 4 σ confidence level between 1.1 and 1.4 µm. The transmission spectra results indicate that WASP-19b is a planet with no or low levels of TiO and without a high C/O ratio. The lack of observable TiO features are possibly due to rainout, breakdown from stellar activity or the presence of other absorbers in the optical.


Monthly Notices of the Royal Astronomical Society | 2015

HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering

David K. Sing; Hannah R. Wakeford; N. Nikolov; Jonathan J. Fortney; Adam Burrows; G. E. Ballester; Drake Deming; S. Aigrain; Jean-Michel Desert; N. P. Gibson; Gregory W. Henry; Heather A. Knutson; A. Lecavelier des Etangs; F. Pont; A. Vidal-Madjar; Michael W. Williamson; Paul A. Wilson

We present Hubble Space Telescope optical and near-IR transmission spectra of the transiting hot-Jupiter WASP-31b. The spectrum covers 0.3–1.7 μm at a resolution R ∼ 70, which we combine with Spitzer photometry to cover the full-optical to IR. The spectrum is dominated by a cloud deck with a flat transmission spectrum which is apparent at wavelengths > 0.52 μm. The cloud deck is present at high altitudes and low pressures, as it covers the majority of the expected optical Na line and near-IR H2O features. While Na i absorption is not clearly identified, the resulting spectrum does show a very strong potassium feature detected at the 4.2σ confidence level. Broadened alkali wings are not detected, indicating pressures below ∼10 mbar. The lack of Na and strong K is the first indication of a sub-solar Na/K abundance ratio in a planetary atmosphere (ln[Na/K] = −3.3 ± 2.8), which could potentially be explained by Na condensation on the planets night side, or primordial abundance variations. A strong Rayleigh scattering signature is detected at short wavelengths, with a 4σ significant slope. Two distinct aerosol size populations can explain the spectra, with a smaller sub-micron size grain population reaching high altitudes producing a blue Rayleigh scattering signature on top of a larger, lower lying population responsible for the flat cloud deck at longer wavelengths. We estimate that the atmospheric circulation is sufficiently strong to mix micron size particles upwards to the required 1–10 mbar pressures, necessary to explain the cloud deck. These results further confirm the importance of clouds in hot Jupiters, which can potentially dominate the overall spectra and may alter the abundances of key gaseous species.


Monthly Notices of the Royal Astronomical Society | 2012

GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO‐2b from differential long‐slit spectroscopy

David K. Sing; Catherine M. Huitson; Mercedes Lopez-Morales; F. Pont; J.-M. Desert; D. Ehrenreich; Paul A. Wilson; G. E. Ballester; Jonathan J. Fortney; A. Lecavelier des Etangs; A. Vidal-Madjar

We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) instrument, enabling differential spectrophotometric transit light curves capable of measuring the exoplanets transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300 A. We find that sub-mmag-level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ∼1000 A regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimizing the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50-A bandpass centred on the Na i doublet, with absorption depths of Δ(Rpl/R★)2 = 0.049 ± 0.017 per cent using the R500R grism and 0.047 ± 0.011 per cent using the R500B grism (combined 5.2σ significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ∼800 A region surrounding the doublet. Combined with narrow-band photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planets atmosphere.


Monthly Notices of the Royal Astronomical Society | 2014

Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b

N. Nikolov; David K. Sing; F. Pont; Adam Burrows; Jonathan J. Fortney; G. E. Ballester; T. Evans; Catherine M. Huitson; Hannah R. Wakeford; Paul A. Wilson; S. Aigrain; Drake Deming; N. P. Gibson; Gregory W. Henry; Heather A. Knutson; A. Lecavelier des Etangs; A. Vidal-Madjar; Kevin J. Zahnle

We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on Hubble Space Telescope observations, covering the spectral regime from 0.29 to 1.027 μm with Space Telescope Imaging Spectrograph (STIS), which is coupled with a recent Wide Field Camera 3 (WFC3) transit (1.087 to 1.687 μm). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55 μm, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3σ significance level, but find no evidence for the potassium feature. The red data imply a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ∼0.85 μm. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 ± 1.6 pressure scaleheights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simultaneous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. We compare the complete STIS and WFC3 transmission spectrum with theoretical atmospheric models which include haze, sodium and an extra optical absorber. We find that both an optical absorber and a supersolar sodium to water abundance ratio might be a scenario explaining the HAT-P-1b observations. Our results suggest that strong optical absorbers may be a dominant atmospheric feature in some hot Jupiter exoplanets.


Monthly Notices of the Royal Astronomical Society | 2014

The VAST Survey - III. The multiplicity of A-type stars within 75 pc

R. J. De Rosa; Jenny Patience; Paul A. Wilson; Adam C. Schneider; Sloane J. Wiktorowicz; A. Vigan; Christian Marois; Inseok Song; Bruce A. Macintosh; James R. Graham; René Doyon; Michael S. Bessell; Sandrine Thomas; Olivier Lai

With a combination of adaptive optics imaging and a multi-epoch common proper motion search, we have conducted a large volume-limited (D 6 75 pc) multiplicity survey of A- type stars, sensitive to companions beyond 30 au. The sample for the Volume- limited A- STar (VAST) survey consists of 435 A-type stars: 363 stars were observed with adaptive optics, 228 stars were searched for wide common proper motion companions and 156 stars were measured with both techniques. The projected separation coverage of the VAST survey extends from 30 to 45,000 au. A total of 137 stellar companions were resolved, including 64 new detections from the VAST survey, and the companion star fraction, projected separation distribution and mass ratio distribution were measured. The separation distribution forms a log-normal distribution similar to the solar-type binary d istribution, but with a peak shifted to a significantly wider value of 387 +132 98 au. Integrating the fit to the distribution over the 30 to 10,000 au observed range, the companion star fraction for A-type stars is estimated as 33.8 ± 2.6 per cent. The mass ratio distribution of closer (< 125 au) binaries is distinct from that of wider systems, with a flat distribution for close systems and a distribution that tends towards smaller mass ratios for wider binaries. Combining this result with previous spectroscopic surveys of A-type stars gives an estimate of the total companion star fraction of 68.9 ± 7.0 per cent. The most complete assessment of higher order multiples was estimated from the 156-star subset of the VAST sample with both adaptive optics and common proper motion measurements, combined with a thorough literature search for companions, yielding a lower limit on the frequency of single, binary, triple, qua druple and quintuple A-type star


Monthly Notices of the Royal Astronomical Society | 2015

HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b

N. Nikolov; David K. Sing; Adam Burrows; Jonathan J. Fortney; Gregory W. Henry; F. Pont; G. E. Ballester; S. Aigrain; Paul A. Wilson; Catherine M. Huitson; N. P. Gibson; Jean-Michel Desert; A. Lecavelier des Etangs; A. Vidal-Madjar; Hannah R. Wakeford; Kevin J. Zahnle

© 2014 The Authors. We report Hubble Space Telescope optical to near-infrared transmission spectroscopy of the hot-Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph and Spitzers InfraRed Array Camera. The resulting spectrum covers the range 0.29-4.5 μm. We find evidence for modest stellar activity of WASP-6 and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of Δ (Rp/R*) = 0.0071 from 0.33 to 4.5 μm. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of 973 ± 144K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg2 SiO4, MgSiO3, KCl and Na2S dust condensates.WASP- 6b is the second planet after HD 189733b which has equilibrium temperatures near ~1200K and shows prominent atmospheric scattering in the optical.


Monthly Notices of the Royal Astronomical Society | 2011

First Kepler results on compact pulsators – VI. Targets in the final half of the survey phase

Roy Ostensen; R. Silvotti; S. Charpinet; R. Oreiro; S. Bloemen; A. S. Baran; M. D. Reed; S. D. Kawaler; J. H. Telting; Elizabeth M. Green; S. J. O'Toole; Conny Aerts; B. T. Gänsicke; T. R. Marsh; E. Breedt; Ulrich Heber; D. Koester; A. C. Quint; D. W. Kurtz; C. Rodríguez-López; M. Vučković; T. A. Ottosen; S. Frimann; A. Somero; Paul A. Wilson; A. O. Thygesen; Johan E. Lindberg; Hans Kjeldsen; J. Christensen-Dalsgaard; Christopher Allen

We present results from the final 6 months of a survey to search for pulsations in white dwarfs (WDs) and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB) stars and white dwarfs in the sample. From the Kepler photometry and our spectroscopic data, we find that the sample contains five new pulsators of the V1093 Her type, one AMCVn type cataclysmic variable and a number of other binary systems. This completes the survey for compact pulsators with Kepler. No V361 Hya type of short-period pulsating sdB stars were found in this half, leaving us with a total of one single multiperiodic V361 Hya and 13 V1093 Her pulsators for the full survey. Except for the sdB pulsators, no other clearly pulsating hot subdwarfs or white dwarfs were found, although a few low-amplitude candidates still remain. The most interesting targets discovered in this survey will be observed throughout the remainder of the Kepler mission, providing the most long-term photometric data sets ever made on such compact, evolved stars. Asteroseismic investigations of these data sets will be invaluable in revealing the interior structure of these stars and will boost our understanding of their evolutionary history.


Monthly Notices of the Royal Astronomical Society | 2011

The spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter–McLaughlin observations

E. K. Simpson; Don Pollacco; A. Collier Cameron; G. Hébrard; D. R. Anderson; S. C. C. Barros; I. Boisse; F. Bouchy; F. Faedi; Michaël Gillon; L. Hebb; F. P. Keenan; G. R. M. Miller; C. Moutou; D. Queloz; I. Skillen; P. M. Sorensen; H. C. Stempels; A. H. M. J. Triaud; C. A. Watson; Paul A. Wilson

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars’ rotatio n axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: � = 4:7 ± 4:0 � , � =15 +33 � −43� and� = 9:7 +9.0 � −7.7� , respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spinorbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, � = 79:0 +4.5 � −4.3� . It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.


The Astrophysical Journal | 2016

VLT FORS2 comparative transmission spectroscopy: Detection of Na in the atmosphere of WASP-39b from the ground

N. Nikolov; David K. Sing; N. P. Gibson; Jonathan J. Fortney; T. Evans; Joanna K. Barstow; Tiffany Kataria; Paul A. Wilson

We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm on a V = 12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we obtained HST-quality light curves from the ground.

Collaboration


Dive into the Paul A. Wilson's collaboration.

Top Co-Authors

Avatar

F. Pont

University of Exeter

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lecavelier des Etangs

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar

A. Vidal-Madjar

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar

N. P. Gibson

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory W. Henry

Tennessee State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge