Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Morrison is active.

Publication


Featured researches published by Paul D. Morrison.


Neuropsychopharmacology | 2010

Opposite Effects of Δ-9-Tetrahydrocannabinol and Cannabidiol on Human Brain Function and Psychopathology

Sagnik Bhattacharyya; Paul D. Morrison; Paolo Fusar-Poli; Rocío Martín-Santos; Stefan Borgwardt; Toby T. Winton-Brown; Chiara Nosarti; Colin O’Carroll; Marc L. Seal; Paul Allen; Mitul A. Mehta; James Stone; Nigel Tunstall; Vincent Giampietro; Shitij Kapur; Robin M. Murray; Antonio Waldo Zuardi; José Alexandre S. Crippa; Zerrin Atakan; Philip McGuire

Δ-9-tetrahydrocannabinol (Δ-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Δ-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Δ-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Δ-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Δ-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Δ-9-THC. Δ-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Δ-9-tetrahydrocannabinol. Δ-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBDs ability to block the psychotogenic effects of Δ-9-THC.


Journal of Psychopharmacology | 2007

Glutamate and dopamine dysregulation in schizophrenia - a synthesis and selective review

James Stone; Paul D. Morrison; Lyn S. Pilowsky

The dopamine hypothesis of schizophrenia is the principal explanatory model of antipsychotic drug action. Recent discoveries extend our understanding of the neurochemistry of schizophrenia, with increasing evidence of dysfunction in glutamate and GABA as well as dopamine systems. In this review, we study the evidence for dopaminergic dysfunction in schizophrenia, drawing data from neurochemical imaging studies. We also review the NMDA receptor hypofunction hypothesis of schizophrenia as a supplementary explanatory model for the illness. We examine predictions made by the NMDA receptor hypofunction hypothesis and consider how they fit with current neurochemical findings in patients and animal models. We consider the case for glutamatergic excitotoxicity as a key process in the development and progression of schizophrenia, and suggest ways in which glutamate and dopamine dysregulation may interact in the condition.


Schizophrenia Bulletin | 2008

Gene-Environment Interplay Between Cannabis and Psychosis

Cécile Henquet; Marta Di Forti; Paul D. Morrison; Rebecca Kuepper; Robin M. Murray

Cannabis use is considered a contributory cause of schizophrenia and psychotic illness. However, only a small proportion of cannabis users develop psychosis. This can partly be explained by the amount and duration of the consumption of cannabis and by its strength but also by the age at which individuals are first exposed to cannabis. Genetic factors, in particular, are likely to play a role in the short- and the long-term effects cannabis may have on psychosis outcome. This review will therefore consider the interplay between genes and exposure to cannabis in the development of psychotic symptoms and schizophrenia. Studies using genetic, epidemiological, experimental, and observational techniques will be discussed to investigate gene-environment correlation gene-environment interaction, and higher order interactions within the cannabis-psychosis association. Evidence suggests that mechanisms of gene-environment interaction are likely to underlie the association between cannabis and psychosis. In this respect, multiple variations within multiple genes--rather than single genetic polymorphisms--together with other environmental factors (eg, stress) may interact with cannabis to increase the risk of psychosis. Further research on these higher order interactions is needed to better understand the biological pathway by which cannabis use, in some individuals, may cause psychosis in the short- and long term.


Psychological Medicine | 2009

The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning

Paul D. Morrison; Vagelis Zois; D.A. Mckeown; Tak H. Lee; David W. Holt; John Powell; Shitij Kapur; Robin M. Murray

BACKGROUND Recent work suggests that heavy use of cannabis is associated with an increased risk of schizophrenia-like psychosis. However, there is a dearth of experimental studies of the effects of the constituents of cannabis, such as Delta9-tetrahydrocannabinol (THC). In a study of intravenous (i.v.) synthetic THC in healthy humans, we aimed to study the relationship of the psychotic symptoms induced by THC to the consequent anxiety and neuropsychological impairment. METHOD Twenty-two healthy adult males aged 28+/-6 years (mean+/-s.d.) participated in experimental sessions in which i.v. THC (2.5 mg) was administered under double-blind, placebo-controlled conditions. Self-rated and investigator-rated measurements of mood and psychosis [the University of Wales Institute of Science and Technology Mood Adjective Checklist (UMACL), the Positive and Negative Syndrome Scale (PANSS) and the Community Assessment of Psychic Experiences (CAPE)] were made at baseline and at 30, 80 and 120 min post-injection. Participants also completed a series of neuropsychological tests [the Rey Auditory Verbal Learning Task (RAVLT), Digit Span, Verbal Fluency and the Baddeley Reasoning Task] within 45 min of injection. RESULTS THC-induced positive psychotic symptoms, and participant- and investigator-rated measurements of these were highly correlated. Participants showed an increase in anxiety ratings but there was no relationship between either self- or investigator-rated positive psychotic symptoms and anxiety. THC also impaired neuropsychological performance but once again there was no relationship between THC-induced positive psychotic symptoms and deficits in working memory/executive function. CONCLUSIONS These findings confirm that THC can induce a transient, acute psychotic reaction in psychiatrically well individuals. The extent of the psychotic reaction was not related to the degree of anxiety or cognitive impairment.


Journal of Psychopharmacology | 2013

Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment

Amir Englund; Paul D. Morrison; Judith Nottage; Dominic Hague; Fergus Kane; Stefania Bonaccorso; James Stone; Avi Reichenberg; Rudolf Brenneisen; David W. Holt; Amanda Feilding; Lucy Walker; Robin M. Murray; Shitij Kapur

Community-based studies suggest that cannabis products that are high in Δ9-tetrahydrocannabinol (THC) but low in cannabidiol (CBD) are particularly hazardous for mental health. Laboratory-based studies are ideal for clarifying this issue because THC and CBD can be administered in pure form, under controlled conditions. In a between-subjects design, we tested the hypothesis that pre-treatment with CBD inhibited THC-elicited psychosis and cognitive impairment. Healthy participants were randomised to receive oral CBD 600mg (n=22) or placebo (n=26), 210 min ahead of intravenous (IV) THC (1.5 mg). Post-THC, there were lower PANSS positive scores in the CBD group, but this did not reach statistical significance. However, clinically significant positive psychotic symptoms (defined a priori as increases ≥3 points) were less likely in the CBD group compared with the placebo group, odds ratio (OR)=0.22 (χ2=4.74, p<0.05). In agreement, post-THC paranoia, as rated with the State Social Paranoia Scale (SSPS), was less in the CBD group compared with the placebo group (t=2.28, p<0.05). Episodic memory, indexed by scores on the Hopkins Verbal Learning Task-revised (HVLT-R), was poorer, relative to baseline, in the placebo pre-treated group (-10.6±18.9%) compared with the CBD group (-0.4%±9.7 %) (t=2.39, p<0.05). These findings support the idea that high-THC/low-CBD cannabis products are associated with increased risks for mental health.


Frontiers in Behavioral Neuroscience | 2011

Drug-Induced Psychosis: How to Avoid Star Gazing in Schizophrenia Research by Looking at More Obvious Sources of Light

Alessandra Paparelli; Marta Di Forti; Paul D. Morrison; Robin M. Murray

The prevalent view today is that schizophrenia is a syndrome rather than a specific disease. Liability to schizophrenia is highly heritable. It appears that multiple genetic and environmental factors operate together to push individuals over a threshold into expressing the characteristic clinical picture. One environmental factor which has been curiously neglected is the evidence that certain drugs can induce schizophrenia-like psychosis. In the last 60 years, improved understanding of the relationship between drug abuse and psychosis has contributed substantially to our modern view of the disorder suggesting that liability to psychosis in general, and to schizophrenia in particular, is distributed trough the general population in a similar continuous way to liability to medical disorders such as hypertension and diabetes. In this review we examine the main hypotheses resulting from the link observed between the most common psychotomimetic drugs (lysergic acid diethylamide, amphetamines, cannabis, phencyclidine) and schizophrenia.


Current Opinion in Psychiatry | 2007

Cannabis use and psychiatric and cogitive disorders: the chicken or the egg?

Marta Di Forti; Paul D. Morrison; Alexander Butt; Robin M. Murray

Purpose of review Cannabis is the worlds most commonly used illicit drug. In this review, we consider the recent literature on the effects of cannabis on mental health and on cognition. Recent findings Cannabis use in adolescence increases the risk of later schizophrenia-like psychoses, especially in genetically vulnerable individuals. Not surprisingly, patients already suffering from psychosis who use cannabis have a worse outcome than those who do not. These effects of cannabis may be consequent on its impact on the dopamine system. There is less evidence of cannabis playing an aetiological role in other mental disorders including depression, but there have been far fewer studies. Heavy cannabis use has also been shown to affect memory and learning performance, both in healthy individuals and in patients suffering from psychosis. Combined cognitive-behavioural therapy and motivational interviewing seems a promising psychological intervention to achieve a cessation of cannabis use in patients suffering from schizophrenia. Summary Further research is needed to understand the biological mechanisms underlying the effects of cannabis on mental health, but intervention strategies to help patients abstain should currently be implemented in psychiatric services, and public education campaigns should be directed at increasing awareness of the health risks of cannabis.


Schizophrenia Research | 2010

Does dopamine mediate the psychosis-inducing effects of cannabis? A review and integration of findings across disciplines

Rebecca Kuepper; Paul D. Morrison; Jim van Os; Robin M. Murray; Gunter Kenis; Cécile Henquet

General population epidemiological studies have consistently found that cannabis use increases the risk of developing psychotic disorders in a dose-dependent manner. While the epidemiological signal between cannabis and psychosis has gained considerable attention, the biological mechanism whereby cannabis increases risk for psychosis remains poorly understood. Animal research suggests that delta-9-tetrahydrocannabinol (THC, the main psychoactive component of cannabis) increases dopamine levels in several regions of the brain, including striatal and prefrontal areas. Since dopamine is hypothesized to represent a crucial common final pathway between brain biology and actual experience of psychosis, a focus on dopamine may initially be productive in the examination of the psychotomimetic effects of cannabis. Therefore, this review examines the evidence concerning the interactions between THC, endocannabinoids and dopamine in the cortical as well as subcortical regions implicated in psychosis, and considers possible mechanisms whereby cannabis-induced dopamine dysregulation may give rise to delusions and hallucinations. It is concluded that further study of the mechanisms underlying the link between cannabis and psychosis may be conducted productively from the perspective of progressive developmental sensitization, resulting from gene-environment interactions.


Journal of Psychopharmacology | 2011

Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study.

Emma Barkus; Paul D. Morrison; D Vuletic; John Dickson; Peter J. Ell; Lyn S. Pilowsky; Rudolf Brenneisen; David W. Holt; John Powell; Shitij Kapur; Robin M. Murray

Intravenous (IV) Δ9-tetrahydrocannabinol (THC) induces transient psychotic symptoms in healthy subjects and in schizophrenic patients, but the psychotomimetic mechanism is unknown. One possibility is that THC stimulates dopamine (DA) release in the striatum. In this study we tested whether IV THC led to an increase in striatal DA release compared to placebo. We also investigated whether DA release and positive psychotic symptoms were related. Eleven healthy male volunteers completed two 123I-iodobenzamide ([123I]IBZM) single photon emission tomography (SPET) sessions and received IV THC (2.5 mg) or placebo in a randomized counterbalanced order, under double-blind conditions. Analysable data were obtained from nine participants. The Positive and Negative Syndrome Scale (PANSS) was used to rate psychotomimetic effects. Striatal binding index values were calculated using the occipital cortex as a reference region. Both the PANSS positive and general symptoms increased significantly at 30 min following IV THC. There were no significant differences in binding index in the caudate or putamen under THC compared to placebo conditions. Positive psychotic symptoms and DA release were unrelated. THC did not lead to a significant increase in DA release even though the dose was sufficient for participants to have psychotic symptoms. These findings do not support a central role for striatal DA in THC-elicited psychosis.


Neuropsychopharmacology | 2011

Disruption of Frontal Theta Coherence by Δ9-Tetrahydrocannabinol is Associated with Positive Psychotic Symptoms

Paul D. Morrison; Judith Nottage; James Stone; Sagnik Bhattacharyya; Nigel Tunstall; Rudolf Brenneisen; David W. Holt; Daniel Wilson; Alex Sumich; Philip McGuire; Robin M. Murray; Shitij Kapur; Dominic H. ffytche

The main ingredient in cannabis, Δ9-tetrahydrocannabinol (THC), can elicit acute psychotic reactions in healthy individuals and precipitate relapse in schizophrenic patients. However, the neural mechanism of this is unknown. We tested the hypothesis that THC psychopathology is related to changes in electroencephalography (EEG) power or inter-regional coherence. In a within-subjects design, participants (n=16) were given intravenous THC (1.25 mg) or placebo under double-blind conditions, during EEG recordings. Using fast-Fourier transform, EEG data were analyzed for power and coherence in the delta (1–3.5 Hz), theta (3.5–7 Hz), alpha (8–13 Hz), beta (14–25 Hz), low-gamma (30–40 Hz), and high-gamma (60–70 Hz) bands during engagement in the n-back test of working memory (WM). Compared with placebo, THC evoked positive and negative psychotic symptoms, as measured by the positive and negative syndrome scale (p<0.001) and slowed WM performance (p<0.05). Under THC, theta power was specifically reduced, (p<0.001) regardless of WM load; however, the reduction showed no relationship with psychotic symptoms or WM impairment. Coherence between bi-frontal electrodes in the theta band was also reduced by THC (p<0.05) and these reductions correlated with the change-in positive psychotic symptoms (rho=0.79, p<0.001). Bi-frontal specificity was suggested by the absence of a relationship between psychotic symptoms and fronto-parietal coherence. The results reveal that the pro-psychotic effects of THC might be related to impaired network dynamics with impaired communication between the right and left frontal lobes.

Collaboration


Dive into the Paul D. Morrison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge