Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dhana G. Gorasia is active.

Publication


Featured researches published by Dhana G. Gorasia.


Journal of Biological Chemistry | 2012

PG0026 Is the C-terminal Signal Peptidase of a Novel Secretion System of Porphyromonas gingivalis

Michelle D. Glew; Paul D. Veith; Benjamin Peng; Yu-Yen Chen; Dhana G. Gorasia; Qiaohui Yang; Nada Slakeski; Dina Chen; Caroline Moore; Simon Crawford; Eric C. Reynolds

Background: Several virulence factors of Porphyromonas gingivalis have a novel C-terminal signal that directs secretion across the outer membrane. Results: The predicted catalytic amino acid of PG0026 was essential for the removal of this signal. Conclusion: PG0026 is a novel C-terminal signal peptidase. Significance: We have identified a novel signal peptidase of a new type of secretion system. Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ∼70–80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM.


Journal of Proteome Research | 2013

Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment

Paul D. Veith; Nor A. Nor Muhammad; Stuart G. Dashper; Vladimir A. Likić; Dhana G. Gorasia; Dina Chen; Samantha J. Byrne; Deanne V. Catmull; Eric C. Reynolds

The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.


Diabetes | 2012

Constitutive and Inflammatory Immunopeptidome of Pancreatic β-Cells

Nadine L. Dudek; Chor Teck Tan; Dhana G. Gorasia; Nathan P. Croft; Patricia T. Illing; Anthony W. Purcell

Type 1 diabetes is characterized by the autoimmune destruction of pancreatic β-cells. Recognition of major histocompatibility complex (MHC)-bound peptides is critical for both the initiation and progression of disease. In this study, MHC peptide complexes were purified from NIT-1 β-cells, interferon-γ (IFN-γ)-treated NIT-1 cells, splenic and thymic tissue of 12-week-old NOD mice, and peptides identified by mass spectrometry. In addition to global liquid chromatography–tandem mass spectrometry analysis, the targeted approach of multiple-reaction monitoring was used to quantitate the immunodominant Kd-restricted T-cell epitope islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206–214. We identified >2,000 MHC-bound peptides; 1,100 of these presented by β-cells grown under normal conditions or after exposure to IFN-γ. These include sequences from a number of known autoantigens. Quantitation of IGRP206–214 revealed low-level presentation by Kd (∼25 complexes/cell) on NIT-1 cells after IFN-γ treatment compared with the simultaneous presentation of the endogenously processed Kd-restricted peptide Janus kinase-1355–363 (∼15,000 copies/cell). We have successfully sequenced peptides from NIT-1 β-cells under basal and inflammatory conditions. We have shown the feasibility of quantitating disease-associated peptides and provide the first direct demonstration of the disparity between presentation of a known autoantigenic epitope and a common endogenously presented peptide.


Molecular Immunology | 2012

Secreted HLA recapitulates the immunopeptidome and allows in-depth coverage of HLA A*02:01 ligands.

Katherine E. Scull; Nadine L. Dudek; Alexandra J. Corbett; Sri H. Ramarathinam; Dhana G. Gorasia; Nicholas A. Williamson; Anthony W. Purcell

HLA molecules are cell-surface glycoproteins that present peptides, derived from intracellular protein antigens, for surveillance by T lymphocytes. Secreted HLA (sHLA) technology is a powerful approach for studying these peptides, since it facilitates large-scale production of HLA-bound peptides. We compared secreted and membrane-bound forms of HLA A2 in terms of intracellular trafficking and their bound peptide repertoire (termed the immunopeptidome). We demonstrate that sHLA and membrane bound HLA (mHLA) negotiate intracellular compartments with similar maturation kinetics. Moreover, mass spectrometry revealed a substantial overlap in the immunopeptidome was observed when HLA A2-bound peptides were purified from various sources of sHLA and mHLA. By combining machine based algorithms with manual validation, we identified 1266 non-redundant peptides. Analysis of these peptides revealed a number bearing post-translational modifications, although some of these may arise spontaneously others represent modifications performed within the cell that survive antigen processing. Peptides bearing some of these modifications have not previously been described for HLA ligands, therefore, this compendium of 1266 non-redundant peptide sequences adds greatly to the existing database of HLA A2 ligands. Peptides from all sources displayed comparable HLA A2 consensus binding motifs, peptide lengths, predicted HLA A2 binding affinities and putative source antigens. We conclude that sHLA is a valid and useful technique for studying the immunopeptidome.


Journal of Proteome Research | 2011

Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway

Helena Safavi-Hemami; William A. Siero; Dhana G. Gorasia; Neil D. Young; David L. Macmillan; Nicholas A. Williamson; Anthony W. Purcell

Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.


Molecular & Cellular Proteomics | 2014

Combined Proteomic and Transcriptomic Interrogation of the Venom Gland of Conus geographus Uncovers Novel Components and Functional Compartmentalization

Helena Safavi-Hemami; Hao Hu; Dhana G. Gorasia; Pradip K. Bandyopadhyay; Paul D. Veith; Neil D. Young; Eric C. Reynolds; Mark Yandell; Baldomero M. Olivera; Anthony W. Purcell

Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snails body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities.


Journal of Biological Chemistry | 2012

Modulation of Conotoxin Structure and Function Is Achieved through a Multienzyme Complex in the Venom Glands of Cone Snails

Helena Safavi-Hemami; Dhana G. Gorasia; Andrew M. Steiner; Nicholas A. Williamson; John A. Karas; Joanna Gajewiak; Baldomero M. Olivera; Grzegorz Bulaj; Anthony W. Purcell

Background: Conotoxins can be utilized to investigate enzyme-assisted folding of disulfide-rich peptides. Results: Various ER-resident cone snail enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation by reconfiguring disulfide connectivities. Conclusion: The folding of conotoxins is a tightly regulated multienzyme-assisted process. Significance: Modulation of the conformation of conotoxins increases their molecular and functional diversity. The oxidative folding of large polypeptides has been investigated in detail; however, comparatively little is known about the enzyme-assisted folding of small, disulfide-containing peptide substrates. To investigate the concerted effect of multiple enzymes on the folding of small disulfide-rich peptides, we sequenced and expressed protein-disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase, and immunoglobulin-binding protein (BiP) from Conus venom glands. Conus PDI was shown to catalyze the oxidation and reduction of disulfide bonds in two conotoxins, α-GI and α-ImI. Oxidative folding rates were further increased in the presence of Conus PPI with the maximum effect observed in the presence of both enzymes. In contrast, Conus BiP was only observed to assist folding in the presence of microsomes, suggesting that additional co-factors were involved. The identification of a complex between BiP, PDI, and nascent conotoxins further suggests that the folding and assembly of conotoxins is a highly regulated multienzyme-assisted process. Unexpectedly, all three enzymes contributed to the folding of the ribbon isomer of α-ImI. Here, we identify this alternative disulfide-linked species in the venom of Conus imperialis, providing the first evidence for the existence of a “non-native” peptide isomer in the venom of cone snails. Thus, ER-resident enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation and function by reconfiguring disulfide connectivities. This study has evaluated the role of a number of ER-resident enzymes in the folding of conotoxins, providing novel insights into the enzyme-guided assembly of these small, disulfide-rich peptides.


Journal of Proteome Research | 2015

Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes.

Dhana G. Gorasia; Nadine L. Dudek; Paul D. Veith; Renu Shankar; Helena Safavi-Hemami; Nicholas A. Williamson; Eric C. Reynolds; Michael J. Hubbard; Anthony W. Purcell

The complex interplay of many cell types and the temporal heterogeneity of pancreatic islet composition obscure the direct role of resident alpha and beta cells in the development of Type 1 diabetes. Therefore, in addition to studying islets isolated from non-obese diabetic mice, we analyzed homogeneous cell populations of murine alpha (αTC-1) and beta (NIT-1) cell lines to understand the role and differential survival of these two predominant islet cell populations. A total of 56 proteins in NIT-1 cells and 50 in αTC-1 cells were differentially expressed when exposed to proinflammatory cytokines. The major difference in the protein expression between cytokine-treated NIT-1 and αTC-1 cells was free radical scavenging enzymes. A similar observation was made in cytokine-treated whole islets, where a comprehensive analysis of subcellular fractions revealed that 438 unique proteins were differentially expressed under inflammatory conditions. Our data indicate that beta cells are relatively susceptible to ER and oxidative stress and reveal key pathways that are dysregulated in beta cells during cytokine exposure. Additionally, in the islets, inflammation also leads to enhanced antigen presentation, which completes a three-way insult on beta cells, rendering them targets of infiltrating T lymphocytes.


PLOS Pathogens | 2015

Porphyromonas gingivalis Type IX Secretion Substrates Are Cleaved and Modified by a Sortase-Like Mechanism

Dhana G. Gorasia; Paul D. Veith; Dina Chen; Christine A. Seers; Helen A. Mitchell; Yu-Yen Chen; Michelle D. Glew; Stuart G. Dashper; Eric C. Reynolds

The type IX secretion system (T9SS) of Porphyromonas gingivalis secretes proteins possessing a conserved C-terminal domain (CTD) to the cell surface. The C-terminal signal is essential for these proteins to translocate across the outer membrane via the T9SS. On the surface the CTD of these proteins is cleaved prior to extensive glycosylation. It is believed that the modification on these CTD proteins is anionic lipopolysaccharide (A-LPS), which enables the attachment of CTD proteins to the cell surface. However, the exact site of modification and the mechanism of attachment of CTD proteins to the cell surface are unknown. In this study we characterized two wbaP (PG1964) mutants that did not synthesise A-LPS and accumulated CTD proteins in the clarified culture fluid (CCF). The CTDs of the CTD proteins in the CCF were cleaved suggesting normal secretion, however, the CTD proteins were not glycosylated. Mass spectrometric analysis of CTD proteins purified from the CCF of the wbaP mutants revealed the presence of various peptide/amino acid modifications from the growth medium at the C-terminus of the mature CTD proteins. This suggested that modification occurs at the C-terminus of T9SS substrates in the wild type P. gingivalis. This was confirmed by analysis of CTD proteins from wild type, where a 648 Da linker was identified to be attached at the C-terminus of mature CTD proteins. Importantly, treatment with proteinase K released the 648 Da linker from the CTD proteins demonstrating a peptide bond between the C-terminus and the modification. Together, this is suggestive of a mechanism similar to sortase A for the cleavage and modification/attachment of CTD proteins in P. gingivalis. PG0026 has been recognized as the CTD signal peptidase and is now proposed to be the sortase-like protein in P. gingivalis. To our knowledge, this is the first biochemical evidence suggesting a sortase-like mechanism in Gram-negative bacteria.


PLOS Pathogens | 2016

Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

Dhana G. Gorasia; Paul D. Veith; Eric Hanssen; Michelle D. Glew; Keiko Sato; Hideharu Yukitake; Koji Nakayama; Eric C. Reynolds

The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

Collaboration


Dive into the Dhana G. Gorasia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dina Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Yen Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge