Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Wes is active.

Publication


Featured researches published by Paul D. Wes.


Journal of Biological Chemistry | 2011

CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease.

Seo Hyun Cho; Binggui Sun; Yungui Zhou; Tiina M. Kauppinen; Brian Halabisky; Paul D. Wes; Richard M. Ransohoff; Li Gan

Aberrant microglial activation has been proposed to contribute to the cognitive decline in Alzheimer disease (AD), but the underlying molecular mechanisms remain enigmatic. Fractalkine signaling, a pathway mediating the communication between microglia and neurons, is deficient in AD brains and down-regulated by amyloid-β. Although fractalkine receptor (CX3CR1) on microglia was found to regulate plaque load, no functional effects have been reported. Our study demonstrates that CX3CR1 deficiency worsens the AD-related neuronal and behavioral deficits. The effects were associated with cytokine production but not with plaque deposition. Ablation of CX3CR1 in mice overexpressing human amyloid precursor protein enhanced Tau pathology and exacerbated the depletion of calbindin in the dentate gyrus. The levels of calbindin in the dentate gyrus correlated negatively with those of tumor necrosis factor α and interleukin 6, suggesting neurotoxic effects of inflammatory factors. Functionally, removing CX3CR1 in human amyloid precursor protein mice worsened the memory retention in passive avoidance and novel object recognition tests, and their memory loss in the novel object recognition test is associated with high levels of interleukin 6. Our findings identify CX3CR1 as a key microglial pathway in protecting against AD-related cognitive deficits that are associated with aberrant microglial activation and elevated inflammatory cytokines.


Acta neuropathologica communications | 2015

Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis

Inge R. Holtman; Divya Raj; Jeremy A. Miller; Wandert Schaafsma; Zhuoran Yin; Nieske Brouwer; Paul D. Wes; Thomas Möller; Marie Orre; Willem Kamphuis; Elly M. Hol; Erik Boddeke; Bart J. L. Eggen

IntroductionMicroglia are tissue macrophages of the central nervous system that monitor brain homeostasis and react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared using Weighted Gene Co-expression Network Analysis (WGCNA).ResultsA highly consistent consensus transcriptional profile of up-regulated genes was identified, which prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition, specific signatures for aging, AD, and ALS were identified.ConclusionMicroglia priming induces a highly conserved transcriptional signature with aging- and disease-specific aspects.


Journal of Alzheimer's Disease | 2011

Tau Transgenic Mice as Models for Cerebrospinal Fluid Tau Biomarkers

Donna M. Barten; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Valerie Guss; Ling Yang; Sethu Sankaranarayanan; Paul D. Wes; Marianne E. Flynn; Jere E. Meredith; Michael K. Ahlijanian; Charles F. Albright

Levels of tau in cerebrospinal fluid (CSF) are elevated in Alzheimers disease (AD) patients. It is believed this elevation is related to the tau pathology and neurodegeneration observed in AD, but not all tauopathies have increased CSF tau. There has been little pre-clinical work to investigate mechanisms of increased CSF tau due to the difficulty in collecting CSF samples from mice, the most commonly used pre-clinical models. We developed methods to collect CSF from mice without contamination from tau in brain tissue, which is approximately 50,000 fold more abundant in brain than CSF. Using these methods, we measured CSF tau from 3xTg, Tg4510, and Tau Alone transgenic mice. All three lines of mice showed age-dependent increases in CSF tau. They varied in phenotype from undetectable to severe tau pathology and neurodegeneration, suggesting that degenerating neurons are unlikely to be the only source of pathologic CSF tau. Overall, CSF tau levels mirrored expression levels and changes of tau in the brain, but they did not always correlate exactly. CSF tau was often more sensitive to changes in brain transgene expression and pathology. In addition, we also developed ELISA assays specific to different regions of the tau protein. We used these assays to provide evidence that CSF tau exists as fragments, with little intact C-terminus and partial loss of the N-terminus. Taken together, these assays and mouse models may be used to facilitate a deeper understanding of CSF tau in neurodegenerative disease.


Nature Neuroscience | 2017

Transcriptomic analysis of purified human cortical microglia reveals age-associated changes

Thais Fernanda de Almeida Galatro; Inge R. Holtman; Antonio M. Lerario; Ilia D. Vainchtein; Nieske Brouwer; Paula Sola; Mariana Matera Veras; Tulio F Pereira; Renata Elaine Paraizo Leite; Thomas Möller; Paul D. Wes; Mari Cleide Sogayar; Jon D. Laman; Wilfred F. A. den Dunnen; Carlos Augusto Pasqualucci; Sueli Mieko Oba-Shinjo; Erik Boddeke; Suely Kazue Nagahashi Marie; Bart J. L. Eggen

Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.


PLOS ONE | 2015

Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models

Sethu Sankaranarayanan; Donna M. Barten; Laurel Vana; Nino Devidze; Ling Yang; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Stefanie Keenan; Alan Lin; Yang Cao; Bradley Snyder; Bin Zhang; Magdalena Nitla; Gregg Hirschfeld; Nestor X. Barrezueta; Craig Polson; Paul D. Wes; Vangipuram S. Rangan; Angela Cacace; Charles F. Albright; Jere E. Meredith; John Q. Trojanowski; Virginia M.-Y. Lee; Kurt R. Brunden; Michael K. Ahlijanian

In Alzheimer’s disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Glia | 2016

Targeting microglia for the treatment of Alzheimer's Disease

Paul D. Wes; Faten A. Sayed; Frédérique Bard; Li Gan

While histological changes in microglia have long been recognized as a pathological feature of Alzheimers disease (AD), recent genetic association studies have also strongly implicated microglia in the etiology of the disease. Coding and noncoding polymorphisms in several genes expressed in microglia—including APOE, TREM2, CD33, GRN, and IL1RAP—alter AD risk, and therefore could be considered as entry points for therapeutic intervention. Furthermore, microglia may have a substantial effect on current amyloid β (Aβ) and tau immunotherapy approaches, since they are the primary cell type in the brain to mediate Fc receptor‐facilitated antibody effector function. In this review, we discuss the considerations in selecting microglial therapeutic targets from the perspective of drug discovery feasibility, and consider the role of microglia in ongoing immunotherapy clinical strategies. GLIA 2016;64:1710–1732


Glia | 2016

Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease

Paul D. Wes; Inge R. Holtman; Erik Boddeke; Thomas Möller; Bart J. L. Eggen

Genome‐wide expression profiling technology has resulted in detailed transcriptome data for a wide range of tissues, conditions and diseases. In neuroscience, expression datasets were mostly generated using whole brain tissue samples, resulting in data from a mixture of cell types, including glial cells and neurons. Over the past few years, a rapidly increasing number of expression profiling studies using isolated microglial cell populations have been reported. In these studies, the microglia transcriptome was compared to other cell types, such as other brain cells and peripheral tissue macrophages, and related to aging and neurodegenerative conditions. A commonality found in many of these studies was that microglia possess distinct gene expression signatures. This repertoire of selectively‐expressed microglial genes highlight functions beyond immune responses, such as synaptic modulation and neurotrophic support, and open up avenues to explore as‐yet‐unexpected roles. These data provide improved understanding of disease pathology, and complement not only the aforementioned whole brain tissue transcriptome studies, but also genome‐ and epigenome‐wide association studies. In this review, insights obtained from isolated microglia transcriptome studies are presented, and compared to studies using other genome‐wide approaches. The relation of microglia to other tissue macrophages and glial cell populations, as well as the role of microglia in the aging brain and in neurodegenerative conditions, will be discussed. Many more of these types of studies are expected in the near future, hopefully leading to the identification of novel genes and targets for neurodegenerative conditions. GLIA 2016;64:197–213


Glia | 2016

Critical data‐based re‐evaluation of minocycline as a putative specific microglia inhibitor

Thomas Möller; Frédérique Bard; Anindya Bhattacharya; Knut Biber; Brian M. Campbell; Elena Dale; Claudia Eder; Li Gan; Gwenn A. Garden; Zoë A. Hughes; Damien D. Pearse; Roland G. W. Staal; Faten A. Sayed; Paul D. Wes; Hendrikus Boddeke

Minocycline, a second generation broad‐spectrum antibiotic, has been frequently postulated to be a “microglia inhibitor.” A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to “inhibition” of microglia. It is, however, unclear how this “inhibition” is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788–1794


The International Journal of Neuropsychopharmacology | 2012

Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder.

Natasa Hlavacova; Paul D. Wes; Maria Ondrejcakova; Marianne E. Flynn; Patricia Poundstone; Stanislav Babic; Harald Murck; Daniela Jezova

The potential role of aldosterone in the pathophysiology of depression is unclear. The aim of this study was to test the hypothesis that prolonged elevation of circulating aldosterone induces depression-like behaviour accompanied by disease-relevant changes in gene expression in the hippocampus. Subchronic (2-wk) treatment with aldosterone (2 μg/100 g body weight per day) or vehicle via subcutaneous osmotic minipumps was used to induce hyperaldosteronism in male rats. All rats (n = 20/treatment group) underwent a modified sucrose preference test. Half of the animals from each treatment group were exposed to the forced swim test (FST), which served both as a tool to assess depression-like behaviour and as a stress stimulus. Affymetrix microarray analysis was used to screen the entire rat genome for gene expression changes in the hippocampus. Aldosterone treatment induced an anhedonic state manifested by decreased sucrose preference. In the FST, depressogenic action of aldosterone was manifested by decreased latency to immobility and increased time spent immobile. Aldosterone treatment resulted in transcriptional changes of genes in the hippocampus involved in inflammation, glutamatergic activity, and synaptic and neuritic remodelling. Furthermore, aldosterone-regulated genes substantially overlapped with genes affected by stress in the FST. This study demonstrates the existence of a causal relationship between the hyperaldosteronism and depressive behaviour. In addition, aldosterone treatment induced changes in gene expression that may be relevant to the aetiology of major depressive disorder. Subchronic treatment with aldosterone represents a new animal model of depression, which may contribute to the development of novel targets for the treatment of depression.


PLOS ONE | 2014

Tau Overexpression Impacts a Neuroinflammation Gene Expression Network Perturbed in Alzheimer’s Disease

Paul D. Wes; Amy Easton; John P. Corradi; Donna M. Barten; Nino Devidze; Lynn B. DeCarr; Amy Truong; Aiqing He; Nestor X. Barrezueta; Craig Polson; Clotilde Bourin; Marianne E. Flynn; Stefanie Keenan; Regina Lidge; Jere E. Meredith; Joanne Natale; Sethu Sankaranarayanan; Greg W. Cadelina; Charlie F. Albright; Angela Cacace

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer’s disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer’s disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.

Collaboration


Dive into the Paul D. Wes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Gan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart J. L. Eggen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Erik Boddeke

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge