Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul N. Schofield is active.

Publication


Featured researches published by Paul N. Schofield.


Nucleic Acids Research | 2014

The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

Sebastian Köhler; Sandra C. Doelken; Christopher J. Mungall; Sebastian Bauer; Helen V. Firth; Isabelle Bailleul-Forestier; Graeme C.M. Black; Danielle L. Brown; Michael Brudno; Jennifer Campbell; David Fitzpatrick; Janan T. Eppig; Andrew P. Jackson; Kathleen Freson; Marta Girdea; Ingo Helbig; Jane A. Hurst; Johanna A. Jähn; Laird G. Jackson; Anne M. Kelly; David H. Ledbetter; Sahar Mansour; Christa Lese Martin; Celia Moss; Andrew D Mumford; Willem H. Ouwehand; Soo Mi Park; Erin Rooney Riggs; Richard H. Scott; Sanjay M. Sisodiya

The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.


European Journal of Human Genetics | 2005

Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome

Wendy N. Cooper; Anita Luharia; Gail A Evans; Hussain Raza; Antonita C Haire; Richard Grundy; Sarah Bowdin; Andrea Riccio; Gianfranco Sebastio; Jet Bliek; Paul N. Schofield; Wolf Reik; Fiona Macdonald; Eamonn R. Maher

Beckwith–Wiedemann Syndrome (BWS) results from mutations or epigenetic events involving imprinted genes at 11p15.5. Most BWS cases are sporadic and uniparental disomy (UPD) or putative imprinting errors predominate in this group. Sporadic cases with putative imprinting defects may be subdivided into (a) those with loss of imprinting (LOI) of IGF2 and H19 hypermethylation and silencing due to a defect in a distal 11p15.5 imprinting control element (IC1) and (b) those with loss of methylation at KvDMR1, LOI of KCNQ1OT1 (LIT1) and variable LOI of IGF2 in whom there is a defect at a more proximal imprinting control element (IC2). We investigated genotype/epigenotype–phenotype correlations in 200 cases with a confirmed molecular genetic diagnosis of BWS (16 with CDKN1C mutations, 116 with imprinting centre 2 defects, 14 with imprinting centre 1 defects and 54 with UPD). Hemihypertrophy was strongly associated with UPD (P<0.0001) and exomphalos was associated with an IC2 defect or CDKN1C mutation but not UPD or IC1 defect (P<0.0001). When comparing birth weight centile, IC1 defect cases were significantly heavier than the patients with CDKN1C mutations or IC2 defect (P=0.018). The risk of neoplasia was significantly higher in UPD and IC1 defect cases than in IC2 defect and CDKN1C mutation cases. Kaplan–Meier analysis revealed a risk of neoplasia for all patients of 9% at age 5 years, but 24% in the UPD subgroup. The risk of Wilms’ tumour in the IC2 defect subgroup appears to be minimal and intensive screening for Wilms’ tumour appears not to be indicated. In UPD patients, UPD extending to WT1 was associated with renal neoplasia (P=0.054). These findings demonstrate that BWS represents a spectrum of disorders. Identification of the molecular subtype allows more accurate prognostic predictions and enhances the management and surveillance of BWS children such that screening for Wilms’ tumour and hepatoblastoma can be focused on those at highest risk.


Nature | 2009

Prepublication data sharing.

Ewan Birney; Thomas J. Hudson; Eric D. Green; Chris Gunter; Sean R. Eddy; John A. Rogers; Jennifer R. Harris; S D Ehrlich; Rolf Apweiler; C P Austin; L Berglund; Martin Bobrow; C. Bountra; Anthony J. Brookes; Anne Cambon-Thomsen; Nigel P. Carter; Rex L. Chisholm; Jorge L. Contreras; R M Cooke; William L. Crosby; Ken Dewar; Richard Durbin; Dyke Som.; Joseph R. Ecker; K El Emam; Lars Feuk; Stacey Gabriel; John Gallacher; William M. Gelbart; Antonio Granell

Rapid release of prepublication data has served the field of genomics well. Attendees at a workshop in Toronto recommend extending the practice to other biological data sets.


Journal of Medical Genetics | 2000

Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome

Jacqueline R Engel; Alan V Smallwood; Antonita Harper; Michael J. Higgins; Mitsuo Oshimura; Wolf Reik; Paul N. Schofield; Eamonn R. Maher

Beckwith-Wiedemann syndrome (BWS) is a model imprinting disorder resulting from mutations or epigenetic events involving imprinted genes at chromosome 11p15.5. Thus, germline mutations inCDKN1C, uniparental disomy (UPD), and loss of imprinting of IGF2 and other imprinted genes have been implicated. Many familial BWS cases have germlineCDKN1C mutations. However, most BWS cases are sporadic and UPD or putative imprinting errors predominate in this group. We have identified previously a subgroup of sporadic cases with loss of imprinting (LOI) of IGF2 and epigenetic silencing of H19 proposed to be caused by a defect in a distal 11p15.5 imprinting control element (designated BWSIC1). However, many sporadic BWS patients show biallelicIGF2 expression in the presence of normalH19 methylation and expression patterns. This and other evidence suggested the existence of a further imprinting control element (BWSIC2) at 11p15.5. Recently, we showed that a subgroup of BWS patients have loss of methylation (LOM) at a differentially methylated region (KvDMR1) within theKCNQ1 gene centromeric to theIGF2 and H19genes. We have now analysed a large series of sporadic cases to define the frequency and phenotypic correlates of epigenetic abnormalities in BWS. LOM at KvDMR1 was detected by Southern analysis or a novel PCR based method in 35 of 69 (51%) sporadic BWS without UPD. LOM at KvDMR1 was often, but not invariably associated with LOI ofIGF2. KvDMR1 LOM was not detected in BWS patients with putative BWSIC1 defects and cases with KvDMR1 LOM (that is, putative BWSIC2 defects) invariably had a normalH19 methylation pattern. The incidence of exomphalos in putative BWSIC2 defect patients was not significantly different from that in patients with germlineCDKN1C mutations (20/29 and 13/15 respectively), but was significantly greater than that in patients with putative BWSIC1 defects (0/5, p=0.007) and UPD (0/22, p<0.0001). These findings are consistent with the hypothesis that LOM of KvDMR1 (BWSIC2 defect) results in epigenetic silencing ofCDKN1C and variable LOI ofIGF2. BWS patients with embryonal tumours have UPD or a BWSIC1 defect but not LOM of KvDMR1. This study has further shown how (1) variations in phenotypic expression of BWS may be linked to specific molecular subgroups and (2) molecular analysis of BWS can provide insights into mechanisms of imprinting regulation.


Journal of Medical Genetics | 1999

Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation

Wayne W K Lam; Izuho Hatada; Sachiko Oh-ishi; Tsunehiro Mukai; Johanna A. Joyce; Trevor Cole; Dian Donnai; Wolf Reik; Paul N. Schofield; Eamonn R. Maher

Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder with a variable phenotype. The major features are anterior abdominal wall defects including exomphalos (omphalocele), pre- and postnatal overgrowth, and macroglossia. Additional less frequent complications include specific developmental defects and a predisposition to embryonal tumours. BWS is genetically heterogeneous and epigenetic changes in the IGF2/H19 genes resulting in overexpression of IGF2 have been implicated in many cases. Recently germline mutations in the cyclin dependent kinase inhibitor gene CDKN1C (p57KIP2) have been reported in a variable minority of BWS patients. We have investigated a large series of familial and sporadic BWS patients for evidence of CDKN1C mutations by direct gene sequencing. A total of 70 patients with classical BWS were investigated; 54 were sporadic with no evidence of UPD and 16 were familial from seven kindreds. Novel germline CDKN1C mutations were identified in five probands, 3/7 (43%) familial cases and 2/54 (4%) sporadic cases. There was no association between germline CDKN1C mutations and IGF2 or H19 epigenotype abnormalities. The clinical phenotype of 13 BWS patients with germline CDKN1C mutations was compared to that of BWS patients with other defined types of molecular pathology. This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p<0.005) or patients with uniparental disomy (0/9, p<0.005). However, there was no association between germline CDKN1C mutations and risk of embryonal tumours. No CDKN1C mutations were identified in six non-BWS patients with overgrowth and Wilms tumour. These findings (1) show that germline CDKN1C mutations are a frequent cause of familial but not sporadic BWS, (2) suggest that CDKN1C mutations probably cause BWS independently of changes in IGF2/H19 imprinting, (3) provide evidence that aspects of the BWS phenotype may be correlated with the involvement of specific imprinted genes, and (4) link genotype-phenotype relationships in BWS and the results of murine experimental models of BWS.


Nucleic Acids Research | 2011

PhenomeNET: a whole-phenome approach to disease gene discovery

Robert Hoehndorf; Paul N. Schofield; Georgios Vasileios Gkoutos

Phenotypes are investigated in model organisms to understand and reveal the molecular mechanisms underlying disease. Phenotype ontologies were developed to capture and compare phenotypes within the context of a single species. Recently, these ontologies were augmented with formal class definitions that may be utilized to integrate phenotypic data and enable the direct comparison of phenotypes between different species. We have developed a method to transform phenotype ontologies into a formal representation, combine phenotype ontologies with anatomy ontologies, and apply a measure of semantic similarity to construct the PhenomeNET cross-species phenotype network. We demonstrate that PhenomeNET can identify orthologous genes, genes involved in the same pathway and gene–disease associations through the comparison of mutant phenotypes. We provide evidence that the Adam19 and Fgf15 genes in mice are involved in the tetralogy of Fallot, and, using zebrafish phenotypes, propose the hypothesis that the mammalian homologs of Cx36.7 and Nkx2.5 lie in a pathway controlling cardiac morphogenesis and electrical conductivity which, when defective, cause the tetralogy of Fallot phenotype. Our method implements a whole-phenome approach toward disease gene discovery and can be applied to prioritize genes for rare and orphan diseases for which the molecular basis is unknown.


Nature | 2009

Post-publication sharing of data and tools

Paul N. Schofield; Tania Bubela; Thomas Weaver; Lili Portilla; Stephen Brown; John M. Hancock; David Einhorn; Glauco P. Tocchini-Valentini; Martin Hrabé de Angelis; Nadia Rosenthal

Despite existing guidelines on access to data and bioresources, good practice is not widespread. A meeting of mouse researchers in Rome proposes ways to promote a culture of sharing.


American Journal of Human Genetics | 2015

The human phenotype ontology: semantic unification of common and rare disease

Tudor Groza; Sebastian Köhler; Dawid Moldenhauer; Nicole Vasilevsky; Gareth Baynam; Tomasz Zemojtel; Lynn M. Schriml; Warren A. Kibbe; Paul N. Schofield; Tim Beck; Drashtti Vasant; Anthony J. Brookes; Andreas Zankl; Nicole L. Washington; Christopher J. Mungall; Suzanna E. Lewis; Melissa Haendel; Helen Parkinson; Peter N. Robinson

The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.


international conference of the ieee engineering in medicine and biology society | 2009

Entity/quality-based logical definitions for the human skeletal phenome using PATO

Georgios V. Gkoutos; Christopher J. Mungall; Sandra Dölken; Michael Ashburner; Suzanna E. Lewis; John M. Hancock; Paul N. Schofield; Sebastian Köhler; Peter N. Robinson

This paper describes an approach to providing computer-interpretable logical definitions for the terms of the Human Phenotype Ontology (HPO) using PATO, the ontology of phenotypic qualities, to link terms of the HPO to the anatomic and other entities that are affected by abnormal phenotypic qualities. This approach will allow improved computerized reasoning as well as a facility to compare phenotypes between different species. The PATO mapping will also provide direct links from phenotypic abnormalities and underlying anatomic structures encoded using the Foundational Model of Anatomy, which will be a valuable resource for computational investigations of the links between anatomical components and concepts representing diseases with abnormal phenotypes and associated genes.


Database | 2011

Towards BioDBcore: a community-defined information specification for biological databases

Pascale Gaudet; Amos Marc Bairoch; Dawn Field; Susanna-Assunta Sansone; Chris Taylor; Teresa K. Attwood; Alex Bateman; Judith A. Blake; J. Michael Cherry; Rex L. Chrisholm; Guy Cochrane; Charles E. Cook; Janan T. Eppig; Michael Y. Galperin; Robert Gentleman; Carole A. Goble; Takashi Gojobori; John M. Hancock; Douglas G. Howe; Tadashi Imanishi; Janet Kelso; David Landsman; Suzanna E. Lewis; Ilene Karsch Mizrachi; Sandra Orchard; B. F. Francis Ouellette; Shoba Ranganathan; Lorna Richardson; Philippe Rocca-Serra; Paul N. Schofield

The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.

Collaboration


Dive into the Paul N. Schofield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Hoehndorf

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Smedley

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassilis Aidinis

Alexander Fleming Biomedical Sciences Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janan T. Eppig

Mount Desert Island Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge