Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula A. Harrison is active.

Publication


Featured researches published by Paula A. Harrison.


Biodiversity and Conservation | 2010

Towards an assessment of multiple ecosystem processes and services via functional traits

Francesco de Bello; Sandra Lavorel; Sandra Díaz; R. Harrington; Johannes H. C. Cornelissen; Richard D. Bardgett; Matty P. Berg; Pablo A. Cipriotti; Christian K. Feld; Daniel Hering; Pedro Martins da Silva; Simon G. Potts; Leonard Sandin; José Paulo Sousa; Jonathan Storkey; David A. Wardle; Paula A. Harrison

Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.


Ecological Modelling | 2002

SPECIES: A Spatial Evaluation of Climate Impact on the Envelope of Species

Richard G. Pearson; Terence P. Dawson; Pam Berry; Paula A. Harrison

A model, A Spatial Evaluation of Climate Impact on the Envelope of Species (SPECIES), is presented which has been developed to evaluate the impacts of climate change on the bioclimatic envelope of plant species in Great Britain. SPECIES couples an artificial neural network with a climate–hydrological process model. The hybrid model has been successfully trained to estimate current species distributions using climate and soils data at the European scale before application at a finer resolution national scale. Using this multi-scale approach ensures encapsulation of the full extent of future climate scenarios within Great Britain without extrapolating outside of the models training dataset. Application of the model to 32 plant species produced a mean Pearson correlation coefficient of 0.841 and a mean Kappa statistic of 0.772 between observed and simulated distributions. Simulations of four climate change scenarios revealed that changes to suitable climate space in Great Britain is highly species dependent and that distribution changes may be multidirectional and temporally non-linear. Analysis of the SPECIES results suggests that the neural network methodology can provide a feasible alternative to more classical spatial statistical techniques.


Nature | 1999

Relative impacts of human-induced climate change and natural climate variability

Mike Hulme; Em Barrow; Nigel W. Arnell; Paula A. Harrison; Timothy C. Johns; Thomas E. Downing

Assessments of the regional impacts of human-induced climate change on a wide range of social and environmental systems are fundamental for determining the appropriate policy responses to climate change. Yet regional-scale impact assessments are fraught with difficulties, such as the uncertainties of regional climate-change prediction, the specification of appropriate environmental-response models, and the interpretation of impact results in the context of future socio-economic and technological change. The effects of such confounding factors on estimates of climate-change impacts have only been poorly explored. Here we use results from recent global climate simulations and two environmental response models, to consider systematically the effects of natural climate variability (30-year timescales) and future climate-change uncertainties on river runoff and agricultural potential in Europe. We find that, for some regions, the impacts of human-induced climate change by 2050 will be undetectable relative to those due to natural multi-decadal climate variability. If misleading assessments of—and inappropriate adaptation strategies to—climate-change impacts are to be avoided, future studies should consider the impacts of natural multi-decadal climate variability alongside those of human-induced climate change.


Biodiversity and Conservation | 2010

Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms.

Marie Vandewalle; Francesco de Bello; Matty P. Berg; Thomas Bolger; Sylvain Dolédec; Florence Dubs; Christian K. Feld; R. Harrington; Paula A. Harrison; Sandra Lavorel; Pedro Martins da Silva; Marco Moretti; Jari Niemelä; Paulo Santos; Thomas Sattler; J. Paulo Sousa; Martin T. Sykes; Adam J. Vanbergen; Ben A. Woodcock

Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.


BioScience | 2009

Quantifying the Contribution of Organisms to the Provision of Ecosystem Services

Gary W. Luck; R. Harrington; Paula A. Harrison; Claire Kremen; Pam Berry; Rob Bugter; Terence P. Dawson; Francesco de Bello; Sandra Díaz; Christian K. Feld; John R. Haslett; Daniel Hering; Areti Kontogianni; Sandra Lavorel; Mark Rounsevell; Michael J. Samways; Leonard Sandin; Josef Settele; Martin T. Sykes; Sybille van den Hove; Marie Vandewalle; Martin Zobel

Research on ecosystem services has grown rapidly over the last decade. Two conceptual frameworks have been published to guide ecological assessments of organisms that deliver services—the concepts of service-providing units (SPUs) and ecosystem service providers (ESPs). Here, we unite these frameworks and present an SPU-ESP continuum that offers a coherent conceptual approach for synthesizing the latest developments in ecosystem service research, and can direct future studies at all levels of organization. In particular, we show how the service-provider concept can be applied at the population, functional group, and community levels. We strongly emphasize the need to identify and quantify the organisms and their characteristics (e.g., functional traits) that provide services, and to assess service provision relative to the demands of human beneficiaries. We use key examples from the literature to illustrate the new approach and to highlight gaps in knowledge, particularly in relation to the impact of species interactions and ecosystem dynamics on service provision.


Biodiversity and Conservation | 2010

A conceptual framework to assess the effects of environmental change on ecosystem services

Mark Rounsevell; Terry Dawson; Paula A. Harrison

A new conceptual framework is presented for the assessment of the impacts of environmental change drivers on ecosystem service provision and the policy and management responses that would derive from the valuation of these impacts. The Framework for Ecosystem Service Provision (FESP), is based on an interpretation of the widely-used Drivers-Pressures-State-Impact-Response (DPSIR) framework. FESP differs from the DPSIR by offering clarity in the definitions of the various DPSIR components as well as introducing novel elements of relevance to the ecosystem service approach. The value of a common framework lies in making the comparison across competing services accessible and clear as well as highlighting the conflicts and trade-offs between not only multiple ecosystem services, but also multiple service beneficiaries. The framework is explicit, for example, in recognising as state variables not only the attributes of the Ecosystem Service Providers (ESPs), but also the attributes of the Ecosystem Service Beneficiaries (ESBs). That a service depends as much on the attributes of the people whose well-being benefits from the service as on the attributes of the biology providing the service is an important step in integrated social-ecological thinking. FESP also identifies the mechanisms of either mitigation or adaptation to the environmental change problem through the effect of these response strategies on specific pressure or state variables. In this way, FESP can contribute to the policies and strategies that are used to support conservation management. This paper describes the principles of FESP and presents some indicative examples of its practical implementation.


Biodiversity and Conservation | 2010

Identifying and prioritising services in European terrestrial and freshwater ecosystems

Paula A. Harrison; Marie Vandewalle; Martin T. Sykes; Pam Berry; Rob Bugter; Francesco de Bello; Christian K. Feld; Ulf Grandin; R. Harrington; John R. Haslett; Rob H.G. Jongman; Gary W. Luck; Pedro Martins da Silva; Mari Moora; Josef Settele; J. Paulo Sousa; Martin Zobel

Ecosystems are multifunctional and provide humanity with a broad array of vital services. Effective management of services requires an improved evidence base, identifying the role of ecosystems in delivering multiple services, which can assist policy-makers in maintaining them. Here, information from the literature and scientific experts was used to systematically document the importance of services and identify trends in their use and status over time for the main terrestrial and freshwater ecosystems in Europe. The results from this review show that intensively managed ecosystems contribute mostly to vital provisioning services (e.g. agro-ecosystems provide food via crops and livestock, and forests provide wood), while semi-natural ecosystems (e.g. grasslands and mountains) are key contributors of genetic resources and cultural services (e.g. aesthetic values and sense of place). The most recent European trends in human use of services show increases in demand for crops from agro-ecosystems, timber from forests, water flow regulation from rivers, wetlands and mountains, and recreation and ecotourism in most ecosystems, but decreases in livestock production, freshwater capture fisheries, wild foods and virtually all services associated with ecosystems which have considerably decreased in area (e.g. semi-natural grasslands). The condition of the majority of services show either a degraded or mixed status across Europe with the exception of recent enhancements in timber production in forests and mountains, freshwater provision, water/erosion/natural hazard regulation and recreation/ecotourism in mountains, and climate regulation in forests. Key gaps in knowledge were evident for certain services across all ecosystems, including the provision of biochemicals and natural medicines, genetic resources and the regulating services of seed dispersal, pest/disease regulation and invasion resistance.


Biodiversity and Conservation | 2010

Ecosystem services and biodiversity conservation: concepts and a glossary.

R. Harrington; Christian Anton; Terence P. Dawson; Francesco de Bello; Christian K. Feld; John R. Haslett; Tatiana Kluvánková-Oravská; Areti Kontogianni; Sandra Lavorel; Gary W. Luck; Mark Rounsevell; Michael J. Samways; Josef Settele; Michalis Skourtos; Joachim H. Spangenberg; Marie Vandewalle; Martin Zobel; Paula A. Harrison

The RUBICODE project draws on expertise from a range of disciplines to develop and integrate frameworks for assessing the impacts of environmental change on ecosystem service provision, and for rationalising biodiversity conservation in that light. With such diverse expertise and concepts involved, interested parties will not be familiar with all the key terminology. This paper defines the terms as used within the project and, where useful, discusses some reasoning behind the definitions. Terms are grouped by concept rather than being listed alphabetically.


Regional Environmental Change | 2013

Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe.

Paula A. Harrison; Ian P. Holman; George Cojocaru; Kasper Kok; Areti Kontogianni; Marc J. Metzger; Marc Gramberger

Climate change will affect all sectors of society and the environment at all scales, ranging from the continental to the national and local. Decision-makers and other interested citizens need to be able to access reliable science-based information to help them respond to the risks of climate change impacts and assess opportunities for adaptation. Participatory integrated assessment (IA) tools combine knowledge from diverse scientific disciplines, take account of the value and importance of stakeholder ‘lay insight’ and facilitate a two-way iterative process of exploration of ‘what if’s’ to enable decision-makers to test ideas and improve their understanding of the complex issues surrounding adaptation to climate change. This paper describes the conceptual design of a participatory IA tool, the CLIMSAVE IA Platform, based on a professionally facilitated stakeholder engagement process. The CLIMSAVE (climate change integrated methodology for cross-sectoral adaptation and vulnerability in Europe) Platform is a user-friendly, interactive web-based tool that allows stakeholders to assess climate change impacts and vulnerabilities for a range of sectors, including agriculture, forests, biodiversity, coasts, water resources and urban development. The linking of models for the different sectors enables stakeholders to see how their interactions could affect European landscape change. The relationship between choice, uncertainty and constraints is a key cross-cutting theme in the conduct of past participatory IA. Integrating scenario development processes with an interactive modelling platform is shown to allow the exploration of future uncertainty as a structural feature of such complex problems, encouraging stakeholders to explore adaptation choices within real-world constraints of future resource availability and environmental and institutional capacities, rather than seeking the ‘right’ answers.


Biodiversity and Conservation | 2010

Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy

Christian Anton; Juliette Young; Paula A. Harrison; Martin Musche; Györgyi Bela; Christian K. Feld; R. Harrington; John R. Haslett; György Pataki; Mark Rounsevell; Michalis Skourtos; J. Paulo Sousa; Martin T. Sykes; Rob Tinch; Marie Vandewalle; Allan D. Watt; Josef Settele

Using a range of different methods including extensive reviews, workshops and an electronic conference, 70 key research recommendations and 12 priority research needs to integrate the ecosystem services approach into biodiversity conservation policy and funding were identified by a cross-disciplinary group of over 100 scientists and 50 stakeholders, including research funders and policy-makers. These recommendations focus on the ecological underpinning of ecosystem services, drivers that affect ecosystems and their services, biological traits and ecosystem services, the valuation of ecosystem services, spatial and temporal scales in ecosystem service assessment, indicators of ecosystem services, and habitat management, conservation policy and ecosystem services. The recommendations in this paper help steer the research agenda on ecosystem services into policy-relevant areas, agreed upon by funders, researchers and policy-makers. This research agenda will only succeed with increased collaboration between researchers across disciplines, thereby providing a challenge to the research community and research funders to work in new, interdisciplinary ways.

Collaboration


Dive into the Paula A. Harrison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian K. Feld

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Turkelboom

Research Institute for Nature and Forest

View shared research outputs
Researchain Logo
Decentralizing Knowledge