Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula A. Macedo is active.

Publication


Featured researches published by Paula A. Macedo.


Environmental Health Perspectives | 2005

A human-health risk assessment for West Nile virus and insecticides used in mosquito management.

Robert K. D. Peterson; Paula A. Macedo; Ryan S. Davis

West Nile virus (WNV) has been a major public health concern in North America since 1999, when the first outbreak in the Western Hemisphere occurred in New York City. As a result of this ongoing disease outbreak, management of mosquitoes that vector WNV throughout the United States and Canada has necessitated using insecticides in areas where they traditionally have not been used or have been used less frequently. This has resulted in concerns by the public about the risks from insecticide use. The objective of this study was to use reasonable worst-case risk assessment methodologies to evaluate human-health risks for WNV and the insecticides most commonly used to control adult mosquitoes. We evaluated documented health effects from WNV infection and determined potential population risks based on reported frequencies. We determined potential acute (1-day) and subchronic (90-day) multiroute residential exposures from each insecticide for several human subgroups during a WNV disease outbreak scenario. We then compared potential insecticide exposures to toxicologic and regulatory effect levels. Risk quotients (RQs, the ratio of exposure to toxicologic effect) were < 1.0 for all subgroups. Acute RQs ranged from 0.0004 to 0.4726, and subchronic RQs ranged from 0.00014 to 0.2074. Results from our risk assessment and the current weight of scientific evidence indicate that human-health risks from residential exposure to mosquito insecticides are low and are not likely to exceed levels of concern. Further, our results indicate that, based on human-health criteria, the risks from WNV exceed the risks from exposure to mosquito insecticides.


Journal of Medical Entomology | 2013

Experimental and Natural Vertical Transmission of West Nile Virus by California Culex (Diptera: Culicidae) Mosquitoes

Brittany M. Nelms; Ethan Fechter-Leggett; Brian D. Carroll; Paula A. Macedo; Susanne Kluh; William K. Reisen

ABSTRACT Culex (Diptera: Culicidae) mosquitoes, the primary summer vectors of West Nile virus (family Flaviviridae, genus Flavivirus, WNV), also may serve as overwintering reservoir hosts. Detection of WN viral RNA from larvae hatched from eggs deposited by infected females during late summer and fall may provide evidence for the vertical passage of WNV to overwintering cohorts. To determine whether vertical transmission to the overwintering generation occurs in populations of Culex mosquitoes throughout California, larvae from naturally infected females were tested by family for WN viral RNA by real-time quantitative reverse transcription-polymerase chain reaction during August through October 2011. Viral RNA was detected in 34 of 934 Culux tarsalis Coquillett and Cx. pipiens complex females that laid viable egg rafts. From these egg rafts, first-instar larvae from nine families tested positive, yielding an overall field vertical transmission rate of 26% (n = 34). To determine whether the WNV may be lost transtadially during development to the adult stage, first-instar larvae and adult progeny from experimentally infected Cx. pipiens complex females were assessed for the presence and quantity of WN viral RNA. Most (≈75%) WNV infections were lost from positive families during larval development to the adult stage. In field and laboratory studies, only infected mothers with mean cycle threshold scores ≤20 vertically transmitted WNV to larval progeny, adult progeny, or both. In summary, vertical transmission of WNV was detected repeatedly in naturally infected Culex mosquitoes collected throughout California during late summer and fall, with females having high titered infections capable of passing WNV onto their progeny destined for overwintering.


Journal of The American Mosquito Control Association | 2010

Evaluation of Efficacy and Human Health Risk of Aerial Ultra-Low Volume Applications of Pyrethrins and Piperonyl Butoxide for Adult Mosquito Management in Response to West Nile Virus Activity in Sacramento County, California

Paula A. Macedo; Jerome J. Schleier; Marcia Reed; Kara Kelley; Gary W. Goodman; David A. Brown; Robert K. D. Peterson; Yolo Mosquito

Abstract The Sacramento and Yolo Mosquito and Vector Control District (SYMVCD, also referred to as “the District”) conducts surveillance and management of mosquitoes in Sacramento and Yolo counties in California. Following an increase in numbers and West Nile virus (WNV) infection rates of Culex tarsalis and Culex pipiens, the District decided on July 26, 2007, to conduct aerial applications of Evergreen® EC 60-6 (60% pyrethrins: 6% piperonyl butoxide) over approximately 215 km2 in the north area of Sacramento County on the nights of July 30, July 31, and August 1, 2007. At the same time, the District received notification of the first human WNV case in the area. To evaluate the efficacy of the applications in decreasing mosquito abundance and infection rates, we conducted pre- and post-trapping inside and outside the spray zone and assessed human health risks from exposure to the insecticide applications. Results showed a significant decrease in abundance of both Cx. tarsalis and Cx. pipiens, and in the minimum infection rate of Cx. tarsalis. Human-health risks from exposure to the insecticide were below thresholds set by the US Environmental Protection Agency.


Journal of Medical Entomology | 2013

Overwintering Biology of Culex (Diptera: Culicidae) Mosquitoes in the Sacramento Valley of California

Brittany M. Nelms; Paula A. Macedo; Linda Kothera; Harry M. Savage; William K. Reisen

ABSTRACT At temperate latitudes, Culex (Diptera: Culicidae) mosquitoes typically overwinter as adult females in reproductive arrest and also may serve as reservoir hosts for arboviruses when cold temperatures arrest viral replication. To evaluate their role in the persistence of West Nile virus (WNV) in the Sacramento Valley of California, the induction and termination of diapause were investigated for members of the Culex pipiens (L.) complex, Culex tarsalis Coquillett, and Culex stigmatosoma Dyar under field, seminatural, and experimental conditions. All Culex spp. remained vagile throughout winter, enabling the collection of 3,174 females and 1,706 males from diverse habitats during the winters of 2010–2012. Overwintering strategies included both quiescence and diapause. In addition, Cx. pipiens form molestus Forskäl females remained reproductively active in both underground and aboveground habitats. Some blood-fed, gravid, and parous Cx. tarsalis and Cx. pipiens complex females were collected throughout the winter period. Under both field and experimental conditions, Cx. tarsalis and Cx. stigmatosoma females exposed to autumnal conditions arrested primary follicular maturation at previtellogenic stage I, with primary to secondary follicular ratios <1.5 (indicative of a hormonally induced diapause). In contrast, most Cx. pipiens complex females did not enter reproductive diapause and ovarian follicles matured to ≥stage I–II (host-seeking arrest) or were found in various stages of degeneration. Diapause was initiated in the majority of Cx. tarsalis and Cx. stigmatosoma females by mid-late October and was terminated after the winter solstice, but hostseeking seemed limited by temperature. An accrual of 97.52 ± 30.7 and 162.85 ± 79.3 degree-days after the winter solstice was estimated to be necessary for diapause termination in Cx. tarsalis under field and seminatural conditions, respectively. An increase in the proportion of blood-fed Culex females in resting collections occurred concurrently with diapause termination in field populations based on ovarian morphometrics. WNV RNA was detected in one pool of 18 males and in a single blood-fed female Cx. tarsalis collected during winter. Therefore, both vertically and horizontally infected Culex females may persist through winter and possibly transmit WNV after diapause termination in late winter or early spring in the Sacramento Valley of California.


Journal of Medical Entomology | 2011

Blood-Feeding Patterns of the Culex pipiens Complex in Sacramento and Yolo Counties, California

Matthew J. Montgomery; Tara Thiemann; Paula A. Macedo; David A. Brown; Thomas W. Scott

ABSTRACT Mosquitoes in the Culex pipiens complex are competent vectors of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) in the laboratory, and field-collected mosquitoes have tested positive for the virus in California and elsewhere. A better understanding of Cx. pipiens complex blood-feeding patterns will help define the threat that these mosquitoes pose to human health and their role in WNV amplification in northern California. We collected blood-engorged Cx. pipiens complex mosquitoes from resting sites near and away from human habitation in Sacramento and Yolo Counties. Cytochrome c oxidase 1 gene sequences were used to identify the vertebrate species from which blood meals were taken. Of 330 engorged mosquitoes collected at 28 sites from June through August 2007 and May through August 2008, >99% fed on an avian host. Three mosquitoes contained bovine blood and none had fed on a human. American Robins (Turdus migratorius) were bitten most often, and the proportion of American Robin blood meals increased significantly over the summer. Other important avian hosts included House Finches (Carpodacus mexicanus), Barn Swallows (Hirundo rustica), Western Meadowlarks (Sturnella neglecta), and Mourning Doves (Zenaida macroura). In rural areas, Barn Swallows, Brewers Blackbirds (Euphagus cyanocephalus), and House Sparrows (Passer domesticus) were frequent hosts. In settings near human habitation, Mourning Doves and Western Meadowlarks were common hosts. Our data indicate that in north central California mosquitoes in the Cx. pipiens complex may be more important as epiornitic than epidemic vectors of WNV.


Journal of Toxicology and Environmental Health | 2007

Risk Assessments for Exposure of Deployed Military Personnel to Insecticides and Personal Protective Measures used for Disease-Vector Management

Paula A. Macedo; Robert K. D. Peterson; Ryan S. Davis

Infectious diseases are problematic for deployed military forces throughout the world, and, historically, more military service days have been lost to insect-vectored diseases than to combat. Because of the limitations in efficacy and availability of both vaccines and therapeutic drugs, vector management often is the best tool that military personnel have against most vector-borne pathogens. However, the use of insecticides may raise concerns about the safety of their effects on the health of the military personnel exposed to them. Therefore, our objective was to use risk assessment methodologies to evaluate health risks to deployed U.S. military personnel from vector management tactics. Our conservative tier-1, quantitative risk assessment focused on acute, subchronic, and chronic exposures and cancer risks to military personnel after insecticide application and use of personal protective measures in different scenarios. Exposures were estimated for every scenario, chemical, and pathway. Acute, subchronic, and chronic risks were assessed using a margin of exposure (MOE) approach. Our MOE was the ratio of a no-observed-adverse-effect level (NOAEL) to an estimated exposure. MOEs were greater than the levels of concern (LOCs) for all surface residual and indoor space spraying exposures, except acute dermal exposure to lambda-cyhalothrin. MOEs were greater than the LOCs for all chemicals in the truck-mounted ultra-low-volume (ULV) exposure scenario. The aggregate cancer risk for permethrin exceeded 1 × 10−6, but more realistic exposure refinements would reduce the cancer risk below that value. Overall, results indicate that health risks from exposures to insecticides and personal protective measures used by military personnel are low.


Environmental Toxicology and Chemistry | 2007

Environmental concentrations, fate, and risk assessment of pyrethrins and piperonyl butoxide after aerial ultralow-volume applications for adult mosquito management.

Jerome J. Schleier; Robert K. D. Peterson; Paula A. Macedo; David A. Brown

One of the most effective ways of managing adult mosquitoes that vector human and animals diseases is the use of ultralow-volume insecticides. Because of concerns about the safety of the insecticides used for the management of adult mosquitoes, we conducted an environmental fate and efficacy study in Princeton and Colusa (both CA, USA) after aerial applications of pyrethrins and piperonyl butoxide (PBO). One hour before application, PBO concentrations in water were 0.008 and 0.2175 microg/L for Princeton and Colusa, respectively. One hour after the spray event in Princeton, the average PBO concentrations were 0.0125 microg/cm2 on ground-deposition pads and 0.1723 microg/L in water samples, with concentrations decreasing significantly over time. One hour after the spray event in Colusa, the average PBO concentrations were 0.0199 microg/cm2 on deposition pads and 1.274 microg/L in water samples, with concentrations decreasing significantly over time. A significant time and location effect for both deposition pads and water samples in Princeton and Colusa was observed (p<0.001 and p=0.014, respectively). Pyrethrins were not detected in nearly all ground and water samples. One hour after application, mortality of Culex tarsalis and Culex pipiens in sentinel cages was significantly higher than at the control site for both locations (p<0.001). Risk quotients for aquatic surrogate species in Princeton and Colusa were 0.002 or less at 1 h after application, which did not exceed the U.S. Environmental Protection Agency risk quotient level of concern for endangered aquatic organisms of 0.05. Our results suggest that the amounts of pyrethrins and PBO deposited on the ground and in water after aerial ULV insecticide applications are lower than those estimated by previous exposure and risk assessments.


Stochastic Environmental Research and Risk Assessment | 2009

Erratum to: A two-dimensional probabilistic acute human-health risk assessment of insecticide exposure after adult mosquito management

Jerome J. Schleier; Paula A. Macedo; Ryan S. Davis; Leslie M. Shama; Robert K. D. Peterson

Ultra-low-volume (ULV) aerosol applications of insecticides are used to manage high densities of adult mosquitoes. We used two-dimensional probabilistic risk assessment methodologies to evaluate three pyrethroid insecticides (phenothrin, resmethrin, and permethrin), pyrethrins, and two organophosphate insecticides (malathion and naled), applied by truck-mounted ULV sprayer. Piperonyl butoxide, a synergist commonly used in pyrethroid and pyrethrins formulations, was also assessed. The objective of our study was to evaluate probabilistically if a deterministic human-health risk assessment of mosquito insecticides was sufficiently conservative to protect human-health. Toddlers and infants were the highest risk groups while adult males were the lowest risk group assessed in this study. Total acute exposure ranged from 0.00003 to 0.0003 mg/kg day−1 for the chemicals and subgroups assessed examining inhalation, dermal, oral, and hand-to-mouth exposure. We used the risk quotient (RQ) method for our risk assessment, which is calculated by dividing the total potential exposure for each subgroup and chemical by its ingestion toxic endpoint value (RfD). Mean RQs ranged from 0.000004 to 0.034 for all subgroups and chemicals, with none exceeding the RQ level of concern. Naled had the highest RQs of any chemical assessed while PBO had the lowest. Sensitivity analysis demonstrated that the exposure from inhalation and deposition contributed the largest variance to the model output. Results support the findings of previous studies that the risks from adult mosquito management are most likely negligible, and that the human-health deterministic risk assessment is most likely sufficiently conservative.


Human and Ecological Risk Assessment | 2008

Equine Risk Assessment for Insecticides Used in Adult Mosquito Management

Jerome J. Schleier; Ryan S. Davis; Leslie M. Shama; Paula A. Macedo; Robert K. D. Peterson; Sacramento-Yolo Mosquito

ABSTRACT Since West Nile virus (WNV) was introduced to New York City in 1999, it has subsequently spread through the Americas, creating human and animal health risks. Our equine risk assessment focused on three pyrethroid insecticides (phenothrin, resmethrin, and permethrin), pyrethrins, and two organophosphate insecticides (malathion and naled). Piperonyl butoxide, a synergist commonly used in pyrethroids, was also assessed. The objective was to use deterministic and probabilistic risk assessment methodologies to evaluate health risks to horses from vector management tactics used for control of adult mosquitoes. Our exposure estimates were derived from the Kenaga nomogram for food deposition, AgDRIFT® for deposition onto soil and hair, AERMOD for ambient air concentrations, and PRZM-EXAMS for water concentrations. We used the risk quotient (RQ) method for our assessment with the RQ level of concern (LOC) set at 1.0. RQs were determined by comparing the exposure to no-observable-effect-levels. Acute deterministic RQs ranged from 0.0004 for phenothrin to 0.2 for naled. Subchronic deterministic RQs ranged from 0.001 for phenothrin to 0.6 for naled. The probabilistic assessment revealed estimates of deterministic acute and subchronic RQs were highly conservative. Our assessment revealed that risks to horses from adult mosquito insecticides are low and not likely to exceed the LOC.


American Journal of Tropical Medicine and Hygiene | 2013

Phenotypic Variation among Culex pipiens Complex (Diptera: Culicidae) Populations from the Sacramento Valley, California: Horizontal and Vertical Transmission of West Nile Virus, Diapause Potential, Autogeny, and Host Selection

Brittany M. Nelms; Linda Kothera; Tara Thiemann; Paula A. Macedo; Harry M. Savage; William K. Reisen

The vector competence and bionomics of Culex pipiens form pipiens L. and Cx. pipiens f. molestus Forskäl were evaluated for populations from the Sacramento Valley. Both f. pipiens and f. molestus females became infected, produced disseminated infections, and were able to transmit West Nile virus. Form molestus females also transmitted West Nile virus vertically to egg rafts and F1 progeny, whereas f. pipiens females only transmitted to egg rafts. Culex pipiens complex from urban Sacramento blood-fed on seven different avian species and two mammalian species. Structure analysis of blood-fed mosquitoes identified K = 4 genetic clusters: f. molestus, f. pipiens, a group of genetically similar hybrids (Cluster X), and admixed individuals. When females were exposed as larvae to midwinter conditions in bioenvironmental chambers, 85% (N = 79) of aboveground Cx. pipiens complex females and 100% (N = 34) of underground f. molestus females did not enter reproductive diapause.

Collaboration


Dive into the Paula A. Macedo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan S. Davis

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry M. Savage

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Kothera

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Tara Thiemann

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge