Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula Malo de Molina is active.

Publication


Featured researches published by Paula Malo de Molina.


Chemical Science | 2012

Systems chemistry: logic gates based on the stimuli-responsive gel–sol transition of a crown ether-functionalized bis(urea) gelator

Zhenhui Qi; Paula Malo de Molina; Wei Jiang; Qi Wang; Karol Nowosinski; Andrea Schulz; Michael Gradzielski; Christoph A. Schalley

A quite simple, achiral benzo-21-crown-7-substituted bis(urea) low-molecular weight gelator hierarchically assembles into helical fibrils, which further develop into bundles and finally form a stable gel in acetonitrile. The gel–sol transition can be controlled by three different molecular recognition events: K+ binding to the crown ethers, pseudorotaxane formation with secondary ammonium ions and Cl− binding to the urea units. Addition of a cryptand that scavenges the K+ ions and Ag+ addition to remove the chloride and bases/acids, which mediate pseudorotaxane formation, can reverse this process. With the gelator, and these chemical stimuli, a number of different systems can be designed that behave as logic gates. Depending on the choice of components, OR, AND, XOR, NOT, NOR, XNOR and INHIBIT gates have been realized. Thus, the gel–sol transition as a property of the system as a whole is influenced in a complex manner. For some cases, the type of logic gate is defined by input signal concentration so that an even more complex reaction of the gel towards the two input signals is achieved.


Polymer Chemistry | 2012

One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution

Christoph Herfurth; Paula Malo de Molina; Christoph Wieland; Sarah E. Rogers; Michael Gradzielski; André Laschewsky

Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol−1, narrow molar mass distribution (PDI ≤ 1.2) and high end group functionality (∼90%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter.


Langmuir | 2012

Structure and Dynamics of Networks in Mixtures of Hydrophobically Modified Telechelic Multiarm Polymers and Oil in Water Microemulsions

Paula Malo de Molina; Christoph Herfurth; André Laschewsky; Michael Gradzielski

The structural and dynamical properties of oil-in-water (O/W) microemulsions (MEs) modified with telechelic polymers of different functionality (e.g., number of hydrophobically modified arms, f) were studied by means of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and high frequency rheology measurements as a function of the polymer architecture and the amount of added polymer. For this purpose, we employed tailor-made hydrophobically end-capped poly(N,N-dimethylacrylamide) star polymers of a variable number of endcaps, f, of different alkyl chain lengths, synthesized by the reversible addition-fragmentation chain transfer method. The addition of the different end-capped polymers to an uncharged ME of O/W droplets leads to a large enhancement of the viscosity of the systems. SANS experiments show that the O/W ME droplets are not changed upon the addition of the polymer, and its presence only changes the interdroplet interactions. The viscosity increases largely upon addition of a polymer, and this enhancement depends pronouncedly on the alkyl length of the hydrophobic sticker as it controls the residence time in a ME droplet. Similarly, the high frequency modulus G(0) depends on the amount of added polymer but not on the sticker length. G(0) was found to be directly proportional to f - 1. The onset of network formation is shifted to a lower number of stickers per ME droplet with increasing f, and the network formation becomes more effective. Thus, the dynamics of network formation are controlled by the polymer architecture. The effect on the dynamics seen by DLS is even more pronounced. Upon increasing the polymer concentration, slower relaxation modes appear that become especially pronounced with increasing number of arms. The relaxation dynamics are correlated to the rheological relaxation, and both are controlled by the polymer architecture.


Journal of Chemical Physics | 2014

Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo

Ingo Hoffmann; Paula Malo de Molina; B. Farago; Peter Falus; Christoph Herfurth; André Laschewsky; Michael Gradzielski

The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence on the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.


Langmuir | 2015

Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure.

Paula Malo de Molina; Franziska Stefanie Ihlefeldt; Sylvain Prévost; Christoph Herfurth; Marie-Sousai Appavou; André Laschewsky; Michael Gradzielski

The polymer architecture of telechelic or associative polymers has a large impact on the bridging of self-assembled structures. This work presents the phase behavior, small angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescence correlation spectroscopy (FCS) of a nonionic oil-in-water (O/W) microemulsion with hydrophobically end-capped multiarm polymers with functionalities f = 2, 3, and 4. For high polymer concentrations and large average interdroplet distance relative to the end-to-end distance of the polymer, d/R(ee), the system phase separates into a dense, highly connected droplet network phase, in equilibrium with a dilute phase. The extent of the two-phase region is larger for polymers with similar length but higher f. The interaction potential between the droplets in the presence of polymer has both a repulsive and an attractive contribution as a result of the counterbalancing effects of the exclusion by polymer chains and bridging between droplets. This study experimentally demonstrates that higher polymer functionalities induce a stronger attractive force between droplets, which is responsible for a more extended phase separation region, and correlate with lower collective droplet diffusivities and higher amplitude of the second relaxation time in DLS. The viscosity and the droplet self-diffusion obtained from FCS, however, are dominated by the end-capped chain concentration.


Langmuir | 2017

Synthesis of Oil-Laden Poly(ethylene glycol) Diacrylate Hydrogel Nanocapsules from Double Nanoemulsions

Mengwen Zhang; Maksymilian Nowak; Paula Malo de Molina; Michael Abramovitch; Katherine Santizo; Samir Mitragotri; Matthew E. Helgeson

Multiple emulsions have received great interest due to their ability to be used as templates for the production of multicompartment particles for a variety of applications. However, scaling these complex droplets to nanoscale dimensions has been a challenge due to limitations on their fabrication methods. Here, we report the development of oil-in-water-in-oil (O1/W/O2) double nanoemulsions via a two-step high-energy method and their use as templates for complex nanogels comprised of inner oil droplets encapsulated within a hydrogel matrix. Using a combination of characterization methods, we determine how the properties of the nanogels are controlled by the size, stability, internal morphology, and chemical composition of the nanoemulsion templates from which they are formed. This allows for identification of compositional and emulsification parameters that can be used to optimize the size and oil encapsulation efficiency of the nanogels. Our templating method produces oil-laden nanogels with high oil encapsulation efficiencies and average diameters of 200-300 nm. In addition, we demonstrate the versatility of the system by varying the types of inner oil, the hydrogel chemistry, the amount of inner oil, and the hydrogel network cross-link density. These nontoxic oil-laden nanogels have potential applications in food, pharmaceutical, and cosmetic formulations.


Langmuir | 2017

Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules

Mengwen Zhang; Patrick T. Corona; Nino Ruocco; David Alvarez; Paula Malo de Molina; Samir Mitragotri; Matthew E. Helgeson

Complex nanoemulsions, comprising multiphase nanoscale droplets, hold considerable potential advantages as vehicles for encapsulation and delivery as well as templates for nanoparticle synthesis. Although methods exist to controllably produce complex emulsions on the microscale, very few methods exist to produce them on the nanoscale. Here, we examine a recently developed method involving a combination of high-energy emulsification with conventional cosurfactants to produce oil-water-oil (O/W/O) complex nanoemulsions. Specifically, we study in detail how the composition of conventional ethoxylated cosurfactants Span80 and Tween20 influences the morphology and structure of the resulting complex nanoemulsions in the water-cyclohexane system. Using a combination of small-angle neutron scattering and cryo-electron microscopy, we find that the cosurfactant composition controls the generation of complex droplet morphologies including core-shell and multicore-shell O/W/O nanodroplets, resulting in an effective state diagram for the selection of nanoemulsion morphology. Additionally, the cosurfactant composition can be used to control the thickness of the water shell contained within the complex nanodroplets. We hypothesize that this degree of control, despite the highly nonequilibrium nature of the nanoemulsions, is ultimately determined by a competition between the opposing spontaneous curvature of the two cosurfactants, which strongly influences the interfacial curvature of the nanodroplets as a result of their ultralow interfacial tension. This is supported by a correlation between cosurfactant compositions that produces complex nanoemulsions and those that produce homogeneous mixed micelles in equilibrium surfactant-cyclohexane solutions. Ultimately, we show that the formation of complex O/W/O nanoemulsions is weakly perturbed upon the addition of hydrophilic polymer precursors, facilitating their use as templates for the formation of polymer nanocapsules.


Gels | 2017

Gels Obtained by Colloidal Self-Assembly of Amphiphilic Molecules

Paula Malo de Molina; Michael Gradzielski

Gelation in water-based systems can be achieved in many different ways. This review focusses on ways that are based on self-assembly, i.e., a bottom-up approach. Self-assembly naturally requires amphiphilic molecules and accordingly the systems described here are based on surfactants and to some extent also on amphiphilic copolymers. In this review we are interested in cases of low and moderate concentrations of amphiphilic material employed to form hydrogels. Self-assembly allows for various approaches to achieve gelation. One of them is via increasing the effective volume fraction by encapsulating solvent, as in vesicles. Vesicles can be constructed in various morphologies and the different cases are discussed here. However, also the formation of very elongated worm-like micelles can lead to gelation, provided the structural relaxation times of these systems is long enough. Alternatively, one may employ amphiphilic copolymers of hydrophobically modified water soluble polymers that allow for network formation in solution by self-assembly due to having several hydrophobic modifications per polymer. Finally, one may combine such polymers with surfactant self-assemblies and thereby produce interconnected hybrid network systems with corresponding gel-like properties. As seen here there is a number of conceptually different approaches to achieve gelation by self-assembly and they may even become combined for further variation of the properties. These different approaches are described in this review to yield a comprehensive overview regarding the options for achieving gel formation by self-assembly.


Tenside Surfactants Detergents | 2012

Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality

Burcu Altin; Anina Barth; Katharina Bressel; Leonardo Chiappisi; Max Dürr; Michaela Dzionara; Mahmoud Elgammal; Daniela Fliegner; Caroline Ganas; Sakshi Gupta; Gabriele Hedicke; Peggy Heunemann; Ingo Hoffmann; Rastko Joksimovic; Ravneet Kaur; Andreas Klee; Hsin-yi Liu; Jana Lutzki; Paula Malo de Molina; Martin Medebach; Raphael Michel; Michael Muthig; Viet Nguyen-Kim; Claudia Oppel; Sylvain Prévost; Jens Popig; Sven Riemer; Marcel Sperling; René Strassnick; Lin Zhang

Abstract The research topics of our group are in general from the field of physical chemistry of colloidal systems. Within this rather wide layout a large variety of quite different questions and systems are tackled, where the common bridging factor is the aim of understanding the properties of colloidal systems based on their mesoscopic structure and dynamics, which in turn are controlled by their molecular composition. With such an enhanced understanding of the correlation between mesoscopic structure and the macroscopic properties the goal then is to employ this knowledge in order to formulate increasingly complex colloidal system with correspondingly more variable and interesting functionalities. From this general context of investigations, some representative systems and questions that have been studied in recent time by us are covered in this text. They comprise the phase behaviour and the structures formed in solutions of surfactants and amphiphilic copolymers. Once these static properties are known, we also have a high interest in the dynamic properties and the kinetics of morphological transitions as they are observed under non-equilibrium conditions, since they are frequently encountered in applications. A key property of amphiphilic molecules is their ability to solubilise sparingly soluble compounds thereby forming microemulsions or nanoemulsions, where the ability to form such systems depends strongly on the molecular architecture of the amphiphiles. By turning to polymeric amphiphiles the concept of surfactants and their architecture can be extended largely towards more versatile structures, more complex self-assembly and much larger length and time scales. Another direction is the surfactant assisted formation of nanoparticles or mesoporous inorganic materials. By combining copolymers with other polymers, copolymers, colloids, or surfactants – for instance via electrostatically driven co-assembly – one may then form increasingly complex colloidal aggregates. By doing so one is able to control rheological properties or develop complex delivery systems, whose properties can be tailor-made by appropriate choice of the molecular build-up. This striving towards well controlled complexity achieved by means of self- and co-assembly then leads to increasingly more functional systems and is the key direction for future research activities in our group.


Macromolecules | 2015

Heterogeneity and its Influence on the Properties of Difunctional Poly(ethylene glycol) Hydrogels: Structure and Mechanics

Paula Malo de Molina; Sahger Lad; Matthew E. Helgeson

Collaboration


Dive into the Paula Malo de Molina's collaboration.

Top Co-Authors

Avatar

Michael Gradzielski

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengwen Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Hoffmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Sylvain Prévost

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Zhenhui Qi

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Schulz

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Andreas Klee

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge