Pauli Ohukainen
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pauli Ohukainen.
Biomaterials | 2014
Marja Tölli; Mónica P. A. Ferreira; Sini M. Kinnunen; Jaana Rysä; Ermei Mäkilä; Zoltan Szabo; Raisa Serpi; Pauli Ohukainen; Mika J. Välimäki; Alexandra Correia; Jarno Salonen; Jouni Hirvonen; Heikki Ruskoaho; Hélder A. Santos
Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.
Pharmacology Research & Perspectives | 2014
Anna-Maria Tolonen; Johanna Magga; Zoltan Szabo; Pirkko Viitala; Erhe Gao; Anne-Mari Moilanen; Pauli Ohukainen; Laura Vainio; Walter J. Koch; Risto Kerkelä; Heikki Ruskoaho; Raisa Serpi
The members of lethal‐7 (Let‐7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let‐7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4‐week follow‐up period. Let‐7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let‐7c miRNA downregulated the levels of mature Let‐7c miRNA and its other closely related members of Let‐7 family in the heart and resulted in increased expression of pluripotency‐associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let‐7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let‐7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c‐kit+ cardiac stem cells and Ki‐67+ proliferating cells remained unaltered. In conclusion, inhibition of Let‐7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure.
Atherosclerosis | 2012
Virva Pohjolainen; Erja Mustonen; Panu Taskinen; Juha Näpänkangas; Hanna Leskinen; Pauli Ohukainen; Tuomas Peltonen; Jani Aro; Tatu Juvonen; Jari Satta; Heikki Ruskoaho; Jaana Rysä
BACKGROUND Active involvement of extracellular matrix (ECM) and its composition regulating factors may have a central role in the pathogenesis of calcific aortic valve disease (CAVD). Thrombospondins (TSPs) are highly conserved matricellular proteins regulating inflammation, angiogenesis and ECM remodeling. These processes are strongly associated with progression of aortic valve stenosis (AS). However, the expression of TSPs in CAVD is not known. METHODS We characterized the expression of TSPs 1-4 in human aortic valves by real-time quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. Control valves (n=8), thickened and stiffened fibro(sclero)tic valves (n=8), and calcified AS valves (n=24) were compared. Furthermore, potential factors regulating TSP-2 expression was studied by western blotting and gel mobility shift assay in another set of control (n=10) and AS (n=20) valves. RESULTS TSP-2 mRNA levels were increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001) in fibro(sclero)tic and stenotic valves, respectively, whereas the expression of other TSPs did not change significantly. All TSPs 1-4 were detected from aortic valves by immunohistochemistry. Positive TSP-2 immunostaining was seen in the valvular myofibroblasts and patchily in endothelial cells. Semiquantitative analysis of TSP-2 staining indicated increased immunoreactivity for TSP-2 in neo vessels of fibro(sclero)tic and calcified aortic valves. Finally, when compared to controls, AS was associated with significant down regulation of Akt-pathway and diminished binding activity of nuclear factor-κB (NF-κB). CONCLUSIONS We report for the first time that TSPs 1-4 are expressed in human aortic valves. CAVD is characterized by myofibroblastic proliferation and neovascularization associated upregulation of TSP-2 expression, as well as inactivation of Akt and NF-κB.
Annals of Medicine | 2015
Pauli Ohukainen; Suvi Syväranta; Juha Näpänkangas; Kristiina Rajamäki; Panu Taskinen; Tuomas Peltonen; Satu Helske-Suihko; Petri T. Kovanen; Heikki Ruskoaho; Jaana Rysä
Abstract Calcific aortic valve disease (CAVD) is a progressive pathological condition with no effective pharmacological therapy. To identify novel molecular pathways as potential targets for pharmacotherapy, we studied microRNA (miRNA) profiles of heavily stenotic aortic valves (AS). One of the most upregulated miRNAs in AS valves compared to control valves was miR-125b (1.4-fold; P < 0.05). To identify CAVD-related changes in gene expression, DNA microarray analysis was performed, including an intermediate fibro(sclero)tic stage of the disease. This revealed changes especially in genes related to inflammation and immune response, including chemokine (C-C motif) ligand 3 (CCL3) and 4 (CCL4). CCL3 mRNA level was increased 3.9-fold (P < 0.05) when AS valves were compared to control valves, and a 2.5-fold increase (P < 0.05) in CCL4 gene expression was observed when fibro(sclero)tic valves were compared to control valves. Both CCL3 and CCL4 localized to macrophages by immunofluorescence. To identify chemokine–miRNA target pairs, data from miRNA target prediction databases were combined with valvular miRNA and mRNA expression profiles. MiR-125b was computationally predicted to target CCL4, as confirmed experimentally in cultured human THP-1 macrophages. Collectively, miR-125b and CCL4 appear to be involved in the progression of CAVD and may offer novel therapeutic and diagnostic strategies related to this disease.
PLOS ONE | 2015
Annina Kelloniemi; Zoltan Szabo; Raisa Serpi; Juha Näpänkangas; Pauli Ohukainen; Olli Tenhunen; Leena Kaikkonen; Elina Koivisto; Zsolt Bagyura; Risto Kerkelä; Margrét Leósdóttir; Thomas Hedner; Olle Melander; Heikki Ruskoaho; Jaana Rysä
The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.
PLOS ONE | 2015
Anne-Mari Moilanen; Jaana Rysä; Leena Kaikkonen; Teemu Karvonen; Erja Mustonen; Raisa Serpi; Zoltán Szabó; Olli Tenhunen; Zsolt Bagyura; Juha Näpänkangas; Pauli Ohukainen; Pasi Tavi; Risto Kerkelä; Margrét Leósdóttir; Björn Wahlstrand; Thomas Hedner; Olle Melander; Heikki Ruskoaho
Aims In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown. Methods and Results We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P<0.05) and fractional shortening (12.2%, P<0.05) were declined. The adverse effects of WDR12 gene delivery on cardiac function were associated with decreased cellular proliferation, activation of p38 mitogen–activated protein kinase (MAPK)/heat shock protein (HSP) 27 pathway, and increased protein levels of Block of proliferation 1 (BOP1), essential for ribosome biogenesis. Post-infarction WDR12 gene delivery decreased E/A ratio (32%, P<0.05) suggesting worsening of diastolic function. In human subjects, MI associated WDR12 allele was associated significantly with diastolic dysfunction and left atrial size. Conclusions WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.
Scientific Reports | 2018
Sini M. Kinnunen; Marja Tölli; Mika J. Välimäki; Erhe Gao; Zoltan Szabo; Jaana Rysä; Mónica P. A. Ferreira; Pauli Ohukainen; Raisa Serpi; Alexandra Correia; Ermei Mäkilä; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos; Heikki Ruskoaho
Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4–NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4–NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4–NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.
Annals of Medicine | 2017
Tuomas Peltonen; Pauli Ohukainen; Heikki Ruskoaho; Jaana Rysä
Abstract Calcific aortic valve disease (CAVD) represents a spectrum of disease spanning from milder degrees of calcification of valve leaflets, i.e., aortic sclerosis, to severe calcification i.e., aortic stenosis (AS) with hemodynamic instability. The prevalence of CAVD is increasing rapidly due to the aging of the population, being up to 2.8% among patients over 75 years of age. Even without significant aortic valve stenosis, aortic sclerosis is associated with a 50% increased risk of myocardial infarction and death from cardiovascular causes. To date, there is no pharmacological treatment available to reverse or hinder the progression of CAVD. So far, the cholesterol-lowering therapies (statins) and renin–angiotensin system (RAS) blocking drugs have been the major pharmacological agents investigated for treatment of CAVD. Especially angiotensin receptor blockers (ARB)s and angiotensin convertase enzyme inhibitors (ACEI)s, have been under active investigation in clinical trials, but have proven to be unsuccessful in slowing the progression of CAVD. Several studies have suggested that other vasoactive hormones, including endothelin and apelin systems are also associated with development of AS. In the present review, we discuss the role of vasoactive factors in the pathogenesis of CAVD as novel pharmacological targets for the treatment of aortic valve calcification. Key messages Vasoactive factors are involved in the progression of calcific aortic valve disease. Endothelin and renin–angiotensin systems seem to be most prominent targets for therapeutic interventions in the view of valvular pathogenesis. Circulating vasoactive factors may provide targets for diagnostic tools of calcified aortic valve disease.
Physiological Reports | 2016
Hanna Säkkinen; Jani Aro; Leena Kaikkonen; Pauli Ohukainen; Juha Näpänkangas; Heikki Tokola; Heikki Ruskoaho; Jaana Rysä
Regenerating islet‐derived 3γ (Reg3γ) is a multifunctional protein, associated with various tissue injuries and inflammatory states. Since chronic inflammation is characteristics also for heart failure, the aim of this study was to characterize Reg3γ expression in cardiac inflammatory conditions. Reg3γ expression was studied in experimental rat models of myocardial infarction (MI) and pressure overload in vivo. For cell culture studies neonatal rat cardiac myocytes (NRCMs) were used. In addition, adenovirus‐mediated gene transfer of upstream mitogen‐activated protein kinase (MAPK) kinase 3b and p38α MAPK in vivo and in vitro was performed. Reg3γ mRNA (12.8‐fold, P < 0.01) and protein (5.8‐fold, P < 0.001) levels were upregulated during the postinfarction remodeling at day 1 after MI, and angiotensin II (Ang II) markedly increased Reg3γ mRNA levels from 6 h to 2 weeks. Immunohistochemistry revealed that the Ang II‐induced expression of Reg3γ was localized into the cardiac fibroblasts and myofibroblasts of the proliferating connective tissue in the heart. Stretching and treatments with endothelin‐1, lipopolysaccharide (LPS), and fibroblast growth factor‐1 increased Reg3γ mRNA levels in NRCMs. SB203580, a selective p38 MAPK inhibitor, markedly attenuated LPS and mechanical stretch‐induced upregulation of Reg3γ gene expression. Moreover, combined overexpression of MKK3bE and WT p38α increased Reg3γ gene expression in cultured cardiomyocytes in vitro and in the rat heart in vivo. Our study shows that cardiac stress activates Reg3γ expression and p38 MAPK is an upstream regulator of Reg3γ gene expression in heart. Altogether our data suggest Reg3γ is associated with cardiac inflammatory signaling.
bioRxiv | 2018
Sanna Kuusisto; Michael V. Holmes; Pauli Ohukainen; Antti J. Kangas; Mari Karsikas; Mika Tiainen; Markus Perola; Veikko Salomaa; Johannes Kettunen; Mika Ala-Korpela
High-density lipoprotein mediated cholesterol efflux capacity (HDL-CEC) is a functional attribute that may have a protective role in atherogenesis. However, the estimation of HDL-CEC is based on in vitro cell assays that are laborious and hamper large-scale phenotyping. Here, we present a cost-effective high-throughput nuclear magnetic resonance (NMR) spectroscopy method to estimate HDL-CEC directly from serum. We applied the new method in a population-based study of 7,603 individuals including 574 who developed incident coronary heart disease (CHD) during 15 years of follow-up, making this the largest quantitative study for HDL-CEC. As estimated by NMR-spectroscopy, a 1-SD higher HDL-CEC was associated with a lower risk of incident CHD (hazards ratio 0.86; 95%CI 0.79-0.93, adjusted for traditional risk factors and HDL-C). These findings are consistent with published associations based on in vitro cell assays. These corroborative large-scale findings provide further support for a potential protective role of HDL-CEC in CHD, and substantiate this new method and its future applications.