Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pauline Carter is active.

Publication


Featured researches published by Pauline Carter.


JAMA | 2009

Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

Nora D. Volkow; Joanna S. Fowler; Jean Logan; David Alexoff; Wei Zhu; Frank Telang; Gene-Jack Wang; Millard Jayne; Jacob M. Hooker; Christopher Wong; Barbara Hubbard; Pauline Carter; Donald Warner; Payton King; Colleen Shea; Youwen Xu; Lisa Muench; Karen Apelskog-Torres

CONTEXT Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. OBJECTIVE To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. DESIGN, SETTING, AND PARTICIPANTS Positron emission tomography with [(11)C]raclopride (D(2)/D(3) radioligand sensitive to changes in endogenous dopamine) and [(11)C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007-2008) at Brookhaven National Laboratory. MAIN OUTCOME MEASURES Primary outcomes were changes in dopamine D(2)/D(3) receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. RESULTS Modafinil decreased mean (SD) [(11)C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P = .02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P = .002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P = .02), reflecting increases in extracellular dopamine. Modafinil also decreased [(11)C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P < .001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P < .001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P = .001), reflecting occupancy of dopamine transporters. CONCLUSIONS In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations.


Synapse | 2010

Unique distribution of aromatase in the human brain: In vivo studies with PET and [N‐methyl‐11C]vorozole

Anat Biegon; Sung Won Kim; David Alexoff; Millard Jayne; Pauline Carter; Barbara Hubbard; Payton King; Jean Logan; Lisa Muench; Deborah Pareto; David J. Schlyer; Colleen Shea; Frank Telang; Gene-Jack Wang; Youwen Xu; Joanna S. Fowler

Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N‐methyl‐11C]vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90‐min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (VT) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced VT in all regions, though the size of the reduction was region‐dependent, ranging from ∼70% blocking in thalamus andpreoptic area to ∼10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage forthe noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain. Synapse 64:801–807, 2010.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Low monoamine oxidase B in peripheral organs in smokers

Joanna S. Fowler; Jean Logan; Gene-Jack Wang; Nora D. Volkow; Frank Telang; Wei Zhu; Dinko Franceschi; Naomi Pappas; Richard A. Ferrieri; Colleen Shea; Victor Garza; Youwen Xu; David J. Schlyer; S. John Gatley; Yu-Shin Ding; David Alexoff; Donald Warner; Noelwah Netusil; Pauline Carter; Millard Jayne; Payton King; P. Vaska

One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs. Here we compared MAO B in peripheral organs in nonsmokers and smokers by using positron emission tomography and serial scans with the MAO B-specific radiotracers,l-[11C]deprenyl and deuterium-substituted l-[11C]deprenyl (l-[11C]deprenyl-D2). Binding specificity was assessed by using the deuterium isotope effect. We found that smokers have significantly reduced MAO B in peripheral organs, particularly in the heart, lungs, and kidneys, when compared with nonsmokers. Reductions ranged from 33% to 46%. Because MAO B breaks down catecholamines and other physiologically active amines, including those released by nicotine, its inhibition may alter sympathetic tone as well as central neurotransmitter activity, which could contribute to the medical consequences of smoking. In addition, although most of the emphases on the carcinogenic properties of smoke have been placed on the lungs and the upper airways, this finding highlights the fact that multiple organs in the body are also exposed to pharmacologically significant quantities of chemical compounds in tobacco smoke.


NeuroImage | 2008

Pharmacokinetics of the potent hallucinogen, salvinorin A in primates parallels the rapid onset and short duration of effects in humans

Jacob M. Hooker; Youwen Xu; Wynne K. Schiffer; Colleen Shea; Pauline Carter; Joanna S. Fowler

Salvia divinorum, a mint plant originally used by the Mazatecs of Oaxaca, Mexico in spiritual rituals has gained popularity, in smoked form, as a legal hallucinogen in the United States and Europe. Abuse results in rapid onset and short-lasting effects that include visual hallucinations and motor-function impairment. Salvinorin A, the psychoactive component of S. divinorum, is a uniquely potent agonist at kappa-opioid receptors, targets for new therapeutic drugs. We labeled salvinorin A with C-11 by acylation of salvinorin B with [11C]-acetyl chloride to study whether its kinetic behavior in the brain parallels its uniquely fast, yet brief physiological effects. Positron emission tomography (PET) studies performed in 6 adult female baboons indicated extremely rapid brain uptake reaching a peak accounting for 3.3% of the total administered dose in 40 s and clearing with a half-life of 8 min. [11C]-salvinorin A was distributed throughout the brain with the highest concentration in the cerebellum and a notable concentration in the visual cortex, perhaps accounting for its physiological effects when smoked. Naloxone administration did not reduce the overall concentration of [11C]-salvinorin A significantly nor did it change its regional distribution. Peripheral organ kinetics suggested at least two modes of metabolism and excretion occur: through the renal and biliary systems. Our findings have revealed that the exceptionally rapid uptake and brief duration of salvinorin A in the brain match the time-course of visual hallucinations for S. divinorum when smoked. The effects of salvinorin A may occur at <10 mug in the human brain, emphasizing its remarkable potency.


NeuroImage | 2008

Fast Uptake and Long-Lasting Binding of Methamphetamine in the Human Brain: Comparison with Cocaine

Joanna S. Fowler; Nora D. Volkow; Jean Logan; David Alexoff; Frank Telang; Gene-Jack Wang; Christopher Wong; Yeming Ma; A. Kriplani; Kith Pradhan; David Schlyer; Millard Jayne; Barbara Hubbard; Pauline Carter; Donald Warner; Payton King; Colleen Shea; Youwen Xu; Lisa Muench; Karen Apelskog

Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamines uptake in brain was fast (peak uptake at 9 min) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 min) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaines brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamines fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long-lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans.


Journal of Neurochemistry | 2005

Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S,S) and (R,R) enantiomers of reboxetine analogs ([11C]methylreboxetine, 3‐Cl‐[11C]methylreboxetine and [18F]fluororeboxetine), (R)‐[11C]nisoxetine, [11C]oxaprotiline and [11C]lortalamine

Yu-Shin Ding; Kuo-Shyan Lin; Jean Logan; Helene Benveniste; Pauline Carter

We have synthesized and evaluated several new ligands for imaging the norepinephrine transporter (NET) system in baboons with positron emission tomography (PET). Ligands possessing high brain penetration, high affinity and selectivity, appropriate lipophilicity (log P = 1.0–3.5), high plasma free fraction and reasonable stability in plasma were selected for further studies. Based on our characterization studies in baboons, including 11C‐labeled (R)‐nisoxetine (Nis), oxaprotiline (Oxap), lortalamine (Lort) and new analogs of methylreboxetine (MRB), in conjunction with our earlier evaluation of 11C and 18F derivatives of reboxetine, MRB and their individual (R,R) and (S,S) enantiomers, we have identified the superiority of (S,S)‐[11C]MRB and the suitability of MRB analogs [(S,S)‐[11C]MRB > (S,S)‐[11C]3‐Cl‐MRB > (S,S)‐[18F]fluororeboxetine] as potential NET ligands for PET. In contrast, Nis, Oxap and Lort displayed high uptake in striatum (higher than in thalamus). The use of these ligands is further limited by high non‐specific binding and relatively low specific signal, as is characteristic of many earlier NET ligands. Thus, to our knowledge (S,S)‐[11C]MRB remains by far the most promising NET ligand for PET studies.


The Journal of Nuclear Medicine | 2007

PET studies of d-methamphetamine pharmacokinetics in primates: comparison with l-methamphetamine and ( --)-cocaine.

Joanna S. Fowler; Carsten Kroll; Richard A. Ferrieri; David Alexoff; Jean Logan; Stephen L. Dewey; Wynne K. Schiffer; David J. Schlyer; Pauline Carter; Payton King; Colleen Shea; Youwen Xu; Lisa Muench; Helene Benveniste; P. Vaska; Nora D. Volkow

The methamphetamine molecule has a chiral center and exists as 2 enantiomers, d-methamphetamine (the more active enantiomer) and l-methamphetamine (the less active enantiomer). d-Methamphetamine is associated with more intense stimulant effects and higher abuse liability. The objective of this study was to measure the pharmacokinetics of d-methamphetamine for comparison with both l-methamphetamine and (−)-cocaine in the baboon brain and peripheral organs and to assess the saturability and pharmacologic specificity of binding. Methods: d- and l-methamphetamine and (−)-cocaine were labeled with 11C via alkylation of the norprecursors with 11C-methyl iodide using literature methods. Six different baboons were studied in 11 PET sessions at which 2 radiotracer injections were administered 2–3 h apart to determine the distribution and kinetics of 11C-d-methamphetamine in brain and peripheral organs. Saturability and pharmacologic specificity were assessed using pretreatment with d-methamphetamine, methylphenidate, and tetrabenazine. 11C-d-Methamphetamine pharmacokinetics were compared with 11C-l-methamphetamine and 11C-(−)-cocaine in both brain and peripheral organs in the same animal. Results: 11C-d- and l-methamphetamine both showed high uptake and widespread distribution in the brain. Pharmacokinetics did not differ between enantiomers, and the cerebellum peaked earlier and cleared more quickly than the striatum for both. 11C-d-Methamphetamine distribution volume ratio was not substantially affected by pretreatment with methamphetamine, methylphenidate, or tetrabenazine. Both enantiomers showed rapid, high uptake and clearance in the heart and lungs and slower uptake and clearance in the liver and kidneys. A comparison of 11C-d-methamphetamine and 11C-(−)-cocaine showed that 11C-d-methamphetamine peaked later in the brain than did 11C-(−)-cocaine and cleared more slowly. The 2 drugs showed similar behavior in all peripheral organs examined except the kidneys and pancreas, which showed higher uptake for 11C-d-methamphetamine. Conclusion: Brain pharmacokinetics did not differ between d-and l-methamphetamine and thus cannot account for the more intense stimulant effects of d-methamphetamine. Lack of pharmacologic blockade by methamphetamine indicates that the PET image represents nonspecific binding, though the fact that methamphetamine is both a transporter substrate and an inhibitor may also play a role. A comparison of 11C-d-methamphetamine and 11C-(−)-cocaine in the same animal showed that the slower clearance of methamphetamine is likely to contribute to its previously reported longer-lasting stimulant effects relative to those of (−)-cocaine. High kidney uptake of d-methamphetamine or its labeled metabolites may account for the reported renal toxicity of d-methamphetamine in humans.


Biological Psychiatry | 2005

The Slow and Long-Lasting Blockade of Dopamine Transporters in Human Brain Induced by the New Antidepressant Drug Radafaxine Predict Poor Reinforcing Effects

Nora D. Volkow; Gene-Jack Wang; Joanna S. Fowler; Susan Learned-Coughlin; Julia Yang; Jean Logan; David J. Schlyer; John Gatley; Christopher Wong; Wei Zhu; Naomi Pappas; Michael Schueller; Millard Jayne; Pauline Carter; Donald Warner; Yu-Shin Ding; Colleen Shea; Youwen Xu

BACKGROUND (2S,3S)-2-(3-Chlorophenyl)-3,5,5,-trimethyl-2-morpholinol hydrochloride (radafaxine) is a new antidepressant that blocks dopamine transporters (DAT). A concern with drugs that block (DAT) is their potential reinforcing effects and abuse liability. Using positron emission tomography (PET) we have shown that for DAT-blocking drugs to produce reinforcing effects they must induce >50% DAT blockade and the blockade has to be fast (within 15 minutes). This study measures the potency and kinetics for DAT blockade by radafaxine in human brain. METHODS PET and [11C]cocaine were used to estimate DAT blockade at 1, 4, 8, and 24 hours after radafaxine (40 mg p.o.) in 8 controls. Plasma pharmacokinetics and behavioral and cardiovascular effects were measured in parallel. RESULTS DAT blockade by radafaxine was slow, and at 1 hour, it was 11%. Peak blockade occurred at about 4 hours and was 22%. Blockade was long lasting: at 8 hours 17%, and at 24 hours 15%. Peak plasma concentration occurred about 4 to 8 hours. No behavioral or cardiovascular effects were observed. CONCLUSIONS The relatively low potency of radafaxine in blocking DAT and its slow blockade suggests that it is unlikely to have reinforcing effects. This is consistent with preclinical studies showing no self-administration. This is the first utilization of PET to predict abuse liability of a new antidepressant in humans based on DAT occupancy and pharmacokinetics.


Life Sciences | 2002

Study of brain uptake and biodistribution of [11C]toluene in non-human primates and mice

Madina R. Gerasimov; Richard A. Ferrieri; Wynne K. Schiffer; Jean Logan; Samuel J. Gatley; Andrew N. Gifford; D.A Alexoff; Douglas Marsteller; Colleen Shea; Victor Garza; Pauline Carter; Payton King; Charles R. Ashby; S Vitkun; Stephen L. Dewey

Inhalant abuse is a rapidly growing health problem particularly among adolescents. Yet we know little about the neural mechanisms underlying the abuse liability of inhalants, particularly when compared to other addictive drugs. Specifically, our understanding of the relationship between the regional brain phamacokinetics and features classically associated with drug reinforcement is lacking. Under the hypothesis that the abuse liability of toluene can be related to its pharmacokinetic properties and the pattern of regional brain uptake, we developed the methodology for radiolabeling and purifying [11C]toluene for use in PET studies. Here we report the regional brain distribution and kinetics of the widely abused solvent toluene in non-human primates and the whole body biodistribution in mice. To our knowledge, this is the first reported study of the in vivo brain pharmacokinetics of labeled toluene in non-human primates. Rapid uptake of radioactivity into striatal and frontal regions was followed by rapid clearance from the brain. Concurrent findings in rodents indicate similar radio-tracer kinetics, with excretion through kidneys and liver. Taken together, our data provides insight into pharmacokinetic features possibly associated with the abuse liability of toluene.


Neuropsychopharmacology | 2010

Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by CX157

Joanna S. Fowler; Jean Logan; Albert J. Azzaro; Robert M. Fielding; Wei Zhu; Amy K Poshusta; Daniel Burch; Barry Scott Brand; James Cecil Free; Mahnaz Asgharnejad; Gene-Jack Wang; Frank Telang; Barbara Hubbard; Millard Jayne; Payton King; Pauline Carter; Scott Carter; Youwen Xu; Colleen Shea; Lisa Muench; David Alexoff; Elena Shumay; Michael Schueller; Donald Warner; Karen Apelskog-Torres

Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition. Brain MAO-A levels were measured with positron emission tomography (PET) imaging and [11C]clorgyline in 15 normal men after oral dosing of CX157 (20–80 mg). PET imaging was conducted after single and repeated doses of CX157 over a 24-h time course. We found that 60 and 80 mg doses of CX157 produced a robust dose-related inhibition (47–72%) of [11C]clorgyline binding to brain MAO-A at 2 h after administration and that brain MAO-A recovered completely by 24 h post drug. Plasma CX157 concentration was highly correlated with the inhibition of brain MAO-A (EC50: 19.3 ng/ml). Thus, CX157 is the first agent in the RIMA class with documented reversible inhibition of human brain MAO-A, supporting its classification as a RIMA, and the first RIMA with observed plasma levels that can serve as a biomarker for the degree of brain MAO-A inhibition. These data were used to establish the dosing regimen for a current clinical efficacy trial with CX157.

Collaboration


Dive into the Pauline Carter's collaboration.

Top Co-Authors

Avatar

Joanna S. Fowler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Colleen Shea

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Payton King

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Youwen Xu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Alexoff

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Lisa Muench

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gene-Jack Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yu-Shin Ding

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge