Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pauline Spéder is active.

Publication


Featured researches published by Pauline Spéder.


Nature | 2006

Type ID unconventional myosin controls left–right asymmetry in Drosophila

Pauline Spéder; Géza Ádám; Stéphane Noselli

Breaking left–right symmetry in Bilateria embryos is a major event in body plan organization that leads to polarized adult morphology, directional organ looping, and heart and brain function. However, the molecular nature of the determinant(s) responsible for the invariant orientation of the left–right axis (situs choice) remains largely unknown. Mutations producing a complete reversal of left–right asymmetry (situs inversus) are instrumental for identifying mechanisms controlling handedness, yet only one such mutation has been found in mice (inversin) and snails. Here we identify the conserved type ID unconventional myosin 31DF gene (Myo31DF) as a unique situs inversus locus in Drosophila. Myo31DF mutations reverse the dextral looping of genitalia, a prominent left–right marker in adult flies. Genetic mosaic analysis pinpoints the A8 segment of the genital disc as a left–right organizer and reveals an anterior–posterior compartmentalization of Myo31DF function that directs dextral development and represses a sinistral default state. As expected of a determinant, Myo31DF has a trigger-like function and is expressed symmetrically in the organizer, and its symmetrical overexpression does not impair left–right asymmetry. Thus Myo31DF is a dextral gene with actin-based motor activity controlling situs choice. Like mouse inversin, Myo31DF interacts and colocalizes with β-catenin, suggesting that situs inversus genes can direct left–right development through the adherens junction.


Nature | 2006

An unconventional myosin in Drosophila reverses the default handedness in visceral organs

Shunya Hozumi; Reo Maeda; Kiichiro Taniguchi; Maiko Kanai; Syuichi Shirakabe; Takeshi Sasamura; Pauline Spéder; Stéphane Noselli; Toshiro Aigaki; Ryutaro Murakami; Kenji Matsuno

The internal organs of animals often have left–right asymmetry. Although the formation of the anterior–posterior and dorsal–ventral axes in Drosophila is well understood, left–right asymmetry has not been extensively studied. Here we find that the handedness of the embryonic gut and the adult gut and testes is reversed (not randomized) in viable and fertile homozygous Myo31DF mutants. Myo31DF encodes an unconventional myosin, Drosophila MyoIA (also referred to as MyoID in mammals; refs 3, 4), and is the first actin-based motor protein to be implicated in left–right patterning. We find that Myo31DF is required in the hindgut epithelium for normal embryonic handedness. Disruption of actin filaments in the hindgut epithelium randomizes the handedness of the embryonic gut, suggesting that Myo31DF function requires the actin cytoskeleton. Consistent with this, we find that Myo31DF colocalizes with the cytoskeleton. Overexpression of Myo61F, another myosin I (ref. 4), reverses the handedness of the embryonic gut, and its knockdown also causes a left–right patterning defect. These two unconventional myosin I proteins may have antagonistic functions in left–right patterning. We suggest that the actin cytoskeleton and myosin I proteins may be crucial for generating left–right asymmetry in invertebrates.


Current Biology | 2010

Coupling of Apoptosis and L/R Patterning Controls Stepwise Organ Looping

Magali Suzanne; Astrid G. Petzoldt; Pauline Spéder; Jean-Baptiste Coutelis; Hermann Steller; Stéphane Noselli

Handed asymmetry in organ shape and positioning is a common feature among bilateria, yet little is known about the morphogenetic mechanisms underlying left-right (LR) organogenesis. We utilize the directional 360° clockwise rotation of genitalia in Drosophila to study LR-dependent organ looping. Using time-lapse imaging, we show that rotation of genitalia by 360° results from an additive process involving two ring-shaped domains, each undergoing 180° rotation. Our results show that the direction of rotation for each ring is autonomous and strictly depends on the LR determinant myosin ID (MyoID). Specific inactivation of MyoID in one domain causes rings to rotate in opposite directions and thereby cancels out the overall movement. We further reveal a specific pattern of apoptosis at the ring boundaries and show that local cell death is required for the movement of each domain, acting as a brake-releaser. These data indicate that organ looping can proceed through an incremental mechanism coupling LR determination and apoptosis. Furthermore, they suggest a model for the stepwise evolution of genitalia posture in Diptera, through the emergence and duplication of a 180° LR module.


Developmental Cell | 2014

Gap Junction Proteins in the Blood-Brain Barrier Control Nutrient-Dependent Reactivation of Drosophila Neural Stem Cells

Pauline Spéder; Andrea H. Brand

Summary Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.


Seminars in Cell & Developmental Biology | 2008

Left-right asymmetry in Drosophila.

Jean-Baptiste Coutelis; Astrid G. Petzoldt; Pauline Spéder; Magali Suzanne; Stéphane Noselli

Seminal studies of left-right (L/R) patterning in vertebrate models have led to the discovery of roles for the nodal pathway, ion flows and cilia in this process. Although the molecular mechanisms underlying L/R asymmetries seen in protostomes are less well understood, recent work using Drosophila melanogaster as a novel genetic model system to study this process has identified a number of mutations affecting directional organ looping. The genetic analysis of this, the most evolutionary conserved feature of L/R patterning, revealed the existence of a L/R pathway that involves the actin cytoskeleton and an associated type I myosin. In this review, we describe this work in the context of Drosophila development, and discuss the implications of these results for our understanding of L/R patterning in general.


Development | 2010

The Drosophila serine protease homologue Scarface regulates JNK signalling in a negative-feedback loop during epithelial morphogenesis.

Raphaël Rousset; Sophie Bono-Lauriol; Melanie Gettings; Magali Suzanne; Pauline Spéder; Stéphane Noselli

In Drosophila melanogaster, dorsal closure is a model of tissue morphogenesis leading to the dorsal migration and sealing of the embryonic ectoderm. The activation of the JNK signal transduction pathway, specifically in the leading edge cells, is essential to this process. In a genome-wide microarray screen, we identified new JNK target genes during dorsal closure. One of them is the gene scarface (scaf), which belongs to the large family of trypsin-like serine proteases. Some proteins of this family, like Scaf, bear an inactive catalytic site, representing a subgroup of serine protease homologues (SPH) whose functions are poorly understood. Here, we show that scaf is a general transcriptional target of the JNK pathway coding for a secreted SPH. scaf loss-of-function induces defects in JNK-controlled morphogenetic events such as embryonic dorsal closure and adult male terminalia rotation. Live imaging of the latter process reveals that, like for dorsal closure, JNK directs the dorsal fusion of two epithelial layers in the pupal genital disc. Genetic data show that scaf loss-of-function mimics JNK over-activity. Moreover, scaf ectopic expression aggravates the effect of the JNK negative regulator puc on male genitalia rotation. We finally demonstrate that scaf acts as an antagonist by negatively regulating JNK activity. Overall, our results identify the SPH-encoding gene scaf as a new transcriptional target of JNK signalling and reveal the first secreted regulator of the JNK pathway acting in a negative-feedback loop during epithelial morphogenesis.


Developmental Cell | 2013

Drosophila Left/Right Asymmetry Establishment Is Controlled by the Hox Gene Abdominal-B

Jean-Baptiste Coutelis; Charles Géminard; Pauline Spéder; Magali Suzanne; Astrid G. Petzoldt; Stéphane Noselli

In Drosophila, left/right (LR) asymmetry is apparent in the directional looping of the gut and male genitalia. The dextral orientation of the organs depends on the activity of a single gene, MyosinID (myoID), whose mutation leads to a fully inverted LR axis, thus revealing the activity of a recessive sinistral pathway. Here, we present the identification of the Hox gene Abdominal-B (Abd-B) as an upstream regulator of LR determination. This role appears distinct from its function in anteroposterior patterning. We show that the Abd-Bm isoform binds to regulatory sequences of myoID and controls MyoID expression in the organ LR organizer. Abd-Bm is also required for the sinistral pathway. Thus, when Abd-B activity is missing, no symmetry breaking occurs and flies develop symmetrically. These findings identify the Hox gene Abd-B as directing the earliest events of LR asymmetry establishment in Drosophila.


Current Opinion in Cell Biology | 2011

Nutrient control of neural stem cells

Pauline Spéder; Jun Liu; Andrea H. Brand

The physiological status of an organism is able to influence stem cell behaviour to ensure that stem cells meet the needs of the organism during growth, and in response to injury and environmental changes. In particular, the brain is sensitive to metabolic fluctuations. Here we discuss how nutritional status is able to regulate systemic and local insulin/IGF signalling so as to control aspects of neural stem behaviour. Recent results have begun to reveal how systemic signals are relayed to neural stem cells through local interactions with a glial niche. Although much still remains to be discovered, emerging parallels between the regulation of Drosophila and mammalian stem cells suggest a conserved mechanism for how the brain responds to changes in nutritional state.


Diabetes, Obesity and Metabolism | 2014

Control of brain development and homeostasis by local and systemic insulin signalling

J. Liu; Pauline Spéder; Andrea H. Brand

Insulin and insulin‐like growth factors (IGFs) are important regulators of growth and metabolism. In both vertebrates and invertebrates, insulin/IGFs are made available to various organs, including the brain, through two routes: the circulating systemic insulin/IGFs act on distant organs via endocrine signalling, whereas insulin/IGF ligands released by local tissues act in a paracrine or autocrine fashion. Although the mechanisms governing the secretion and action of systemic insulin/IGF have been the focus of extensive investigation, the significance of locally derived insulin/IGF has only more recently come to the fore. Local insulin/IGF signalling is particularly important for the development and homeostasis of the central nervous system, which is insulated from the systemic environment by the blood–brain barrier. Local insulin/IGF signalling from glial cells, the blood–brain barrier and the cerebrospinal fluid has emerged as a potent regulator of neurogenesis. This review will address the main sources of local insulin/IGF and how they affect neurogenesis during development. In addition, we describe how local insulin/IGF signalling couples neural stem cell proliferation with systemic energy state in Drosophila and in mammals.


eLife | 2018

Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila

Pauline Spéder; Andrea Hilary Brand

Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.

Collaboration


Dive into the Pauline Spéder's collaboration.

Top Co-Authors

Avatar

Magali Suzanne

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Astrid G. Petzoldt

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Jean-Baptiste Coutelis

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Géminard

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiichiro Taniguchi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Reo Maeda

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shunya Hozumi

Tokyo University of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge