Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel Gaj is active.

Publication


Featured researches published by Pawel Gaj.


Journal of Molecular Medicine | 2007

Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics

Jerzy Ostrowski; Michal Mikula; Jakub Karczmarski; Tymon Rubel; Lucjan S. Wyrwicz; Piotr Bragoszewski; Pawel Gaj; Michal Dadlez; Eugeniusz Butruk; Jaroslaw Regula

Barrett’s esophagus is characterized by the replacement of squamous epithelium with specialized intestinal metaplastic mucosa. The exact mechanisms of initiation and development of Barrett’s metaplasia remain unknown, but a hypothesis of “successful adaptation” against noxious reflux components has been proposed. To search for the repertoire of adaptation mechanisms of Barrett’s metaplasia, we employed high-throughput functional genomic and proteomic methods that defined the molecular background of metaplastic mucosa resistance to reflux. Transcriptional profiling was established for 23 pairs of esophageal squamous epithelium and Barrett’s metaplasia tissue samples using Affymetrix U133A 2.0 GeneChips and validated by quantitative real-time polymerase chain reaction. Differences in protein composition were assessed by electrophoretic and mass-spectrometry-based methods. Among 2,822 genes differentially expressed between Barrett’s metaplasia and squamous epithelium, we observed significantly overexpressed metaplastic mucosa genes that encode cytokines and growth factors, constituents of extracellular matrix, basement membrane and tight junctions, and proteins involved in prostaglandin and phosphoinositol metabolism, nitric oxide production, and bioenergetics. Their expression likely reflects defense and repair responses of metaplastic mucosa, whereas overexpression of genes encoding heat shock proteins and several protein kinases in squamous epithelium may reflect lower resistance of normal esophageal epithelium than Barrett’s metaplasia to reflux components. Despite the methodological and interpretative difficulties in data analyses discussed in this paper, our studies confirm that Barrett’s metaplasia may be regarded as a specific microevolution allowing for accumulation of mucosal morphological and physiological changes that better protect against reflux injury.


Journal of the National Cancer Institute | 2014

Modulation of Age- and Cancer-Associated DNA Methylation Change in the Healthy Colon by Aspirin and Lifestyle

Faiza Noreen; Martin Röösli; Pawel Gaj; Jakub Pietrzak; Stefan Weis; Patric Urfer; Jaroslaw Regula; Primo Schär; Kaspar Truninger

Background Aberrant DNA methylation in gene promoters is associated with aging and cancer, but the circumstances determining methylation change are unknown. We investigated the impact of lifestyle modulators of colorectal cancer (CRC) risk on the stability of gene promoter methylation in the colonic mucosa. Methods We measured genome-wide promoter CpG methylation in normal colon biopsies (n = 1092) from a female screening cohort, investigated the interaction of lifestyle factors with age-dependent increase in methylation with log-linear multivariable regression, and related their modifying effect to hypermethylation in CRC. All statistical tests were two-sided. Results Of 20025 promoter-associated CpGs analyzed, 1713 showed statistically significant age-dependent methylation gains. Fewer CpGs acquired methylation in users of aspirin (≥2 years) and hormonal replacement therapy (HRT age ≥50 years) compared with nonusers (43 vs 1355; 1 vs1377, respectively), whereas more CpGs were affected in smokers (≥20 years) and individuals with a body mass index (BMI) of 25kg/m2 and greater compared with control groups (180 vs 39; 554 vs 144, respectively). Fifty percent of the CpGs showing age-dependent methylation were found hypermethylated in CRC (odds ratio [OR] = 20; 95% confidence interval [CI] = 18 to 23; P < 2×10–16). These loci gained methylation with a higher median rate compared with age-only methylated sites (P = 2×10–76) and were enriched for polycomb regions (OR = 3.67). Importantly, aspirin (P < .001) and HRT use (P < .001) reduced the methylation rate at these cancer-related genes, whereas smoking (P < .001) and high BMI (P = .004) increased it. Conclusions Lifestyle, including aspirin use, modulates age-associated DNA methylation change in the colonic epithelium and thereby impacts the evolution of cancer methylomes.


DNA Research | 2010

Comprehensive Analysis of the Palindromic Motif TCTCGCGAGA: A Regulatory Element of the HNRNPK Promoter

Michal Mikula; Pawel Gaj; Karolina Dzwonek; Tymon Rubel; Jakub Karczmarski; Agnieszka Paziewska; Artur Dzwonek; Piotr Bragoszewski; Michal Dadlez; Jerzy Ostrowski

Definitive identification of promoters, their cis-regulatory motifs, and their trans-acting proteins requires experimental analysis. To define the HNRNPK promoter and its cognate DNA–protein interactions, we performed a comprehensive study combining experimental approaches, including luciferase reporter gene assays, chromatin immunoprecipitations (ChIP), electrophoretic mobility shift assays (EMSA), and mass spectrometry (MS). We discovered that out of the four potential HNRNPK promoters tested, the one containing the palindromic motif TCTCGCGAGA exhibited the highest activity in a reporter system assay. Although further EMSA and MS analyses, performed to uncover the identity of the palindrome-binding transcription factor, did identify a complex of DNA-binding proteins, neither method unambiguously identified the pertinent direct trans-acting protein(s). ChIP revealed similar chromatin states at the promoters with the palindromic motif and at housekeeping gene promoters. A ChIP survey showed significantly higher recruitment of PARP1, a protein identified by MS as ubiquitously attached to DNA probes, within heterochromatin sites. Computational analyses indicated that this palindrome displays features that mark nucleosome boundaries, causing the surrounding DNA landscape to be constitutively open. Our strategy of diverse approaches facilitated the direct characterization of various molecular properties of HNRNPK promoter bearing the palindromic motif TCTCGCGAGA, despite the obstacles that accompany in vitro methods.


Breast Cancer Research | 2014

Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer

Patrick O’Leary; Marta Terrile; Malgorzata Bajor; Pawel Gaj; Bryan T. Hennessy; Gordon B. Mills; Agnieszka Zagozdzon; Darran P. O’Connor; Donal J. Brennan; Kate Connor; Jane Li; Ana M. Gonzalez-Angulo; Han-Dong Sun; Jian-Xin Pu; Fredrik Pontén; Mathias Uhlén; Karin Jirström; Dominika Nowis; John Crown; Radoslaw Zagozdzon; William M. Gallagher

IntroductionPeroxiredoxin-1 (PRDX1) is a multifunctional protein, acting as a hydrogen peroxide (H2O2) scavenger, molecular chaperone and immune modulator. Although differential PRDX1 expression has been described in many tumors, the potential role of PRDX1 in breast cancer remains highly ambiguous. Using a comprehensive antibody-based proteomics approach, we interrogated PRDX1 protein as a putative biomarker in estrogen receptor (ER)-positive breast cancer.MethodsAn anti-PRDX1 antibody was validated in breast cancer cell lines using immunoblotting, immunohistochemistry and reverse phase protein array (RPPA) technology. PRDX1 protein expression was evaluated in two independent breast cancer cohorts, represented on a screening RPPA (n = 712) and a validation tissue microarray (n = 498). In vitro assays were performed exploring the functional contribution of PRDX1, with oxidative stress conditions mimicked via treatment with H2O2, peroxynitrite, or adenanthin, a PRDX1/2 inhibitor.ResultsIn ER-positive cases, high PRDX1 protein expression is a biomarker of improved prognosis across both cohorts. In the validation cohort, high PRDX1 expression was an independent predictor of improved relapse-free survival (hazard ratio (HR) = 0.62, 95% confidence interval (CI) = 0.40 to 0.96, P = 0.032), breast cancer-specific survival (HR = 0.44, 95% CI = 0.24 to 0.79, P = 0.006) and overall survival (HR = 0.61, 95% CI = 0.44 to 0.85, P = 0.004). RPPA screening of cancer signaling proteins showed that ERα protein was upregulated in PRDX1 high tumors. Exogenous H2O2 treatment decreased ERα protein levels in ER-positive cells. PRDX1 knockdown further sensitized cells to H2O2- and peroxynitrite-mediated effects, whilst PRDX1 overexpression protected against this response. Inhibition of PRDX1/2 antioxidant activity with adenanthin dramatically reduced ERα levels in breast cancer cells.ConclusionsPRDX1 is shown to be an independent predictor of improved outcomes in ER-positive breast cancer. Through its antioxidant function, PRDX1 may prevent oxidative stress-mediated ERα loss, thereby potentially contributing to maintenance of an ER-positive phenotype in mammary tumors. These results for the first time imply a close connection between biological activity of PRDX1 and regulation of estrogen-mediated signaling in breast cancer.


PLOS ONE | 2012

Pooled sample-based GWAS: a cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population.

Pawel Gaj; Natalia Maryan; Ewa E. Hennig; Joanna Ledwon; Agnieszka Paziewska; Aneta Majewska; Jakub Karczmarski; Monika Nesteruk; Jan Wolski; Artur A. Antoniewicz; Krzysztof Przytulski; Andrzej Rutkowski; Alexander Teumer; Georg Homuth; Teresa Starzyńska; Jaroslaw Regula; Jerzy Ostrowski

Background Prostate cancer (PCa) and colorectal cancer (CRC) are the most commonly diagnosed cancers and cancer-related causes of death in Poland. To date, numerous single nucleotide polymorphisms (SNPs) associated with susceptibility to both cancer types have been identified, but their effect on disease risk may differ among populations. Methods To identify new SNPs associated with PCa and CRC in the Polish population, a genome-wide association study (GWAS) was performed using DNA sample pools on Affymetrix Genome-Wide Human SNP 6.0 arrays. A total of 135 PCa patients and 270 healthy men (PCa sub-study) and 525 patients with adenoma (AD), 630 patients with CRC and 690 controls (AD/CRC sub-study) were included in the analysis. Allele frequency distributions were compared with t-tests and χ2-tests. Only those significantly associated SNPs with a proxy SNP (p<0.001; distance of 100 kb; r2>0.7) were selected. GWAS marker selection was conducted using PLINK. The study was replicated using extended cohorts of patients and controls. The association with previously reported PCa and CRC susceptibility variants was also examined. Individual patients were genotyped using TaqMan SNP Genotyping Assays. Results The GWAS selected six and 24 new candidate SNPs associated with PCa and CRC susceptibility, respectively. In the replication study, 17 of these associations were confirmed as significant in additive model of inheritance. Seven of them remained significant after correction for multiple hypothesis testing. Additionally, 17 previously reported risk variants have been identified, five of which remained significant after correction. Conclusion Pooled-DNA GWAS enabled the identification of new susceptibility loci for CRC in the Polish population. Previously reported CRC and PCa predisposition variants were also identified, validating the global nature of their associations. Further independent replication studies are required to confirm significance of the newly uncovered candidate susceptibility loci.


Oncotarget | 2016

Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma

Anna Trzeciecka; Szymon Klossowski; Malgorzata Bajor; Radoslaw Zagozdzon; Pawel Gaj; Angelika Muchowicz; Agata Malinowska; Anna Czerwoniec; Joanna Barankiewicz; Antoni Domagala; Justyna Chlebowska; Monika Prochorec-Sobieszek; Magdalena Winiarska; Ryszard Ostaszewski; Iwonna Gwizdalska; Jakub Golab; Dominika Nowis; Malgorzata Firczuk

Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.


Journal of Alzheimer's Disease | 2012

Identification of a Late Onset Alzheimer's Disease Candidate Risk Variant at 9q21.33 in Polish Patients

Pawel Gaj; Agnieszka Paziewska; Wojciech Bik; Michalina Dąbrowska; Agnieszka Baranowska-Bik; Maria Styczyńska; Małgorzata Chodakowska-Żebrowska; Anna Pfeffer-Baczuk; Maria Barcikowska; Boguslawa Baranowska; Jerzy Ostrowski

Late onset Alzheimers disease (LOAD) accounts for about 95% of all Alzheimers disease cases. While the APOE ε4 variant seems to have unparalleled influence on increased LOAD risk, it does not explain all of the heritability of LOAD. In this study, we present the application of a cost-effective, pooled DNA genome-wide association study (GWAS) to uncover genetic risk variants associated with LOAD in Polish women diagnosed with either mild cognitive impairment (MCI) or well-defined LOAD. A group of 141 patients (94 LOAD and 47 MCI), as well as 141 controls, were assayed using Affymetrix Genome-Wide Human SNP 6.0 arrays. Allele frequency distributions were compared using χ(2)-tests, and significantly associated SNPs at p < 0.0001 with a proxy SNP were selected. GWAS marker selection was conducted using PLINK, and selected SNPs were validated on DNA samples from the same cohort using KASPar Assays. In addition, to determine the genotype of APOE variants (rs429358, rs7412), a multiplex tetra-primer amplification refractory mutation system was applied. The GWAS revealed nine SNPs associated with MCI and/or LOAD. Of these, the association of seven SNPs was confirmed by genotyping of individual patients. Furthermore, the APOE ε4 appeared to be a risk variant for LOAD, while the APOE ε3 showed a protective effect. Multivariate analysis showed association between rs7856774 and LOAD, independently from the effect of APOE variation. Pooled DNA GWAS enabled the identification of a novel LOAD candidate risk variant, rs7856774 (9q21.33), tagging a possible genomic enhancer affecting proximal transcribed elements including DAPK1 gene.


Haematologica | 2018

Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells

Justyna Chlebowska-Tuz; Olga Sokolowska; Pawel Gaj; Michal Lazniewski; Malgorzata Firczuk; Karolina Borowiec; Hanna Sas-Nowosielska; Malgorzata Bajor; Agata Malinowska; Angelika Muchowicz; Kavita Ramji; Piotr Stawiński; Mateusz Sobczak; Zofia Pilch; Anna Rodziewicz-Lurzynska; Malgorzata Zajac; Krzysztof Giannopoulos; Przemyslaw Juszczynski; Grzegorz W. Basak; Dariusz Plewczynski; Rafał Płoski; Jakub Golab; Dominika Nowis

A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.


Cancer Research | 2015

Abstract 5347: SK053, a small molecule inhibitor of enzymes involved in allosteric disulfide bonds formation, shows potent anti-leukemic effects and induces differentiation of human AML cells

Dominika Nowis; Justyna Chlebowska; Pawel Gaj; Michal Lazniewski; Malgorzata Firczuk; Karolina Furs; Radoslaw Sadowski; Pawel Leszczynski; Piotr Stawiński; Szymon Klossowski; Ryszard Ostaszewski; Krzysztof Giannopoulos; Rafał Płoski; Dariusz Plewczynski; Jakub Golab

Although differentiation-inducing agents have significantly improved the management of acute promyelocytic leukemia, no significant progress has been made in the treatment of other acute myeloid leukemias (AML). Numerous proteins involved in tumor development have so-called allosteric disulfide bonds amenable to modifications affecting protein structure and function. We have developed SK053, a small molecule and mechanism-selective inhibitor of enzymes involved in allosteric disulfide bonds formation such as thioredoxin, thioredoxin reductase and protein disulfide isomerase (PDI). The aim of our studies was to evaluate anti-leukemic activity of SK053 in human AML cells. To validate if SK053 targets PDI, a binding assay and an insulin turbidimetric activity assay were used. Cytostatic/cytotoxic effects in HL60, NB4, KG-1 and MOLM14 cells as well as in primary AML cells were assessed with trypan blue exclusion. Differentiation of AML cells was studied with May-Grunwald-Giemsa staining, nitro blue tetrazolium reduction assay and flow cytometry analysis of CD11b, CD14 and CD15 levels and by RNA sequencing, qRT-PCR and western blotting (WB). We observed covalent binding of SK053 to PDI and inhibition of its enzymatic activity with IC50 of 10 μM. Since PDI blocks translation of CCAAT enhancer binding protein alpha (CEBPA), a transcription factor crucial for neutrophils maturation, we evaluated the potential of SK053 to induce differentiation and cytostatic/cytotoxic effects in human AML cells. SK053 exerts significant cytostatic/cytotoxic activity in human AML cells (HL60, NB4, KG-1 and MOLM14), and induces differentiation of AML blasts into more mature myeloid cells. Incubation of AML cells with SK053 induced expression of CEBPA and hexokinase 3 mRNA in quantitative RT-PCR and increased amount of CEBPA protein in nuclear fraction measured in WB. Finally, SK053 induces differentiation of primary leukemic cells freshly isolated from AML patients. RNA-seq analysis revealed that incubation of HL60 cells with SK053 down-regulates mRNA for MYC and ID1 oncogenes as well as for histone proteins. Expression of other genes of mature myeloid lineage such as adhesion molecules (collagen type XV, fibronectin I, MAC-1), hydrolytic enzymes (carboxypeptidase, proteinase 3, CA12 anhydrase, ADAM19 metalloprotease), proteoglycan 2 (core of eosinophilic granules) and PGLYRP3 (peptidoglycan recognition protein 3) was significantly up-regulated. The GeneOntology analysis done with the RNAseq results revealed enrichment of gene transcripts regulating myeloid cells differentiation. SK053 exerts potent anti-leukemic activity and induces differentiation of numerous types of human AML cells. Targeting allosteric disulfide bonds with small molecule inhibitors presents a promising therapeutic strategy in AML. Citation Format: Dominika Nowis, Justyna Chlebowska, Pawel Gaj, Michal Lazniewski, Malgorzata Firczuk, Karolina Furs, Radoslaw Sadowski, Pawel Leszczynski, Piotr Stawinski, Szymon Klossowski, Ryszard Ostaszewski, Krzysztof Giannopoulos, Rafal Ploski, Dariusz Plewczynski, Jakub Golab. SK053, a small molecule inhibitor of enzymes involved in allosteric disulfide bonds formation, shows potent anti-leukemic effects and induces differentiation of human AML cells. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5347. doi:10.1158/1538-7445.AM2015-5347


BMC Medical Genetics | 2008

Lack of evidence for association of primary sclerosing cholangitis and primary biliary cirrhosis with risk alleles for Crohn's disease in Polish patients

Pawel Gaj; Andrzej Habior; Michal Mikula; Jerzy Ostrowski

Collaboration


Dive into the Pawel Gaj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominika Nowis

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Michal Mikula

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Golab

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Bajor

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Firczuk

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Radoslaw Zagozdzon

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Agata Malinowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Angelika Muchowicz

Medical University of Warsaw

View shared research outputs
Researchain Logo
Decentralizing Knowledge