Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pei Y. Liu is active.

Publication


Featured researches published by Pei Y. Liu.


Cancer Research | 2009

The Critical Role of the Class III Histone Deacetylase SIRT1 in Cancer

Tao Liu; Pei Y. Liu; Glenn M. Marshall

Gene expression and deacetylase activity of the class III histone deacetylase SIRT1 are up-regulated in cancer cells due to oncogene overexpression or loss of function of tumor suppressor genes. SIRT1 induces histone deacetylation and methylation, promoter CpG island methylation, transcriptional repression, and deacetylation of tumor suppressor proteins. SIRT1 may play a critical role in tumor initiation, progression, and drug resistance by blocking senescence and apoptosis, and promoting cell growth and angiogenesis. SIRT1 inhibitors have shown promising anticancer effects in animal models of cancer. Further screening for more potent SIRT1 inhibitors may lead to compounds suitable for clinical trials in patients.


PLOS Genetics | 2011

SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability

Glenn M. Marshall; Pei Y. Liu; Samuele Gherardi; Christopher J. Scarlett; Antonio Bedalov; Ning Xu; Nuncio Iraci; Emanuele Valli; Dora Ling; Wayne Thomas; Margo van Bekkum; Eric Sekyere; Kacper Jankowski; Toby Trahair; Karen L. MacKenzie; Michelle Haber; Murray D. Norris; Andrew V. Biankin; Giovanni Perini; Tao Liu

The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma.


Journal of the National Cancer Institute | 2014

Effects of a Novel Long Noncoding RNA, lncUSMycN, on N-Myc Expression and Neuroblastoma Progression

Pei Y. Liu; Daniela Erriquez; Glenn M. Marshall; Andrew E. Tee; Patsie Polly; Mathew Wong; Bing Liu; Jessica L. Bell; Xu D. Zhang; Giorgio Milazzo; Belamy B. Cheung; Archa H. Fox; Alexander Swarbrick; Stefan Hüttelmaier; Maria Kavallaris; Giovanni Perini; John S. Mattick; Marcel E. Dinger; Tao Liu

BACKGROUND Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN oncogene have poor prognoses. METHODS Bioinformatics data were used to discover a novel long noncoding RNA, lncUSMycN, at the 130-kb amplicon. RNA-protein pull-down assays were used to identify proteins bound to lncUSMycN RNA. Kaplan-Meier survival analysis, multivariable Cox regression, and two-sided log-rank test were used to examine the prognostic value of lncUSMycN and NonO expression in three cohorts of neuroblastoma patients (n = 47, 88, and 476, respectively). Neuroblastoma-bearing mice were treated with antisense oligonucleotides targeting lncUSMycN (n = 12) or mismatch sequence (n = 13), and results were analyzed by multiple comparison two-way analysis of variance. All statistical tests were two-sided. RESULTS Bioinformatics data predicted lncUSMycN gene and RNA, and reverse-transcription polymerase chain reaction confirmed its three exons and two introns. The lncUSMycN gene was coamplified with MYCN in 88 of 341 human neuroblastoma tissues. lncUSMycN RNA bound to the RNA-binding protein NonO, leading to N-Myc RNA upregulation and neuroblastoma cell proliferation. High levels of lncUSMycN and NonO expression in human neuroblastoma tissues independently predicted poor patient prognoses (lncUSMycN: hazard ratio [HR] = 1.87, 95% confidence interval [CI] = 1.06 to 3.28, P = .03; NonO: HR = 2.48, 95% CI = 1.34 to 4.57, P = .004). Treatment with antisense oligonucleotides targeting lncUSMycN in neuroblastoma-bearing mice statistically significantly hindered tumor progression (P < .001). CONCLUSIONS Our data demonstrate the important roles of lncUSMycN and NonO in regulating N-Myc expression and neuroblastoma oncogenesis and provide the first evidence that amplification of long noncoding RNA genes can contribute to tumorigenesis.


European Journal of Cancer | 2009

Over-expression of clusterin is a resistance factor to the anti-cancer effect of histone deacetylase inhibitors

Tao Liu; Pei Y. Liu; Andrew E. Tee; Michelle Haber; Murray D. Norris; Martin Gleave; Glenn M. Marshall

Histone deacetylase inhibitors (HDACIs) modulate gene transcription and are among the most promising new classes of anticancer drugs. OGX-011, an anti-sense oligonucleotide targeting clusterin, sensitises cancer cells to chemo- and radiotherapies. By reviewing microarray gene profiling data reported in the literature, we identified clusterin as one of only two genes commonly up-regulated by most HDACIs in cancer cell lines of different organ origins. Suppression of clusterin gene expression synergistically enhanced high-dosage HDACI-induced cell death through cytochrome C-mediated mitochondrial apoptosis in HDACI-resistant cancer cells, and synergistically enhanced low-dosage HDACI-induced growth arrest in both HDACI-sensitive and HDACI-resistant tumour cells, but not in normal cells. In mice xenografted with neuroblastoma cells, combination of OGX-011 and the HDACI, valproate, synergistically repressed tumour growth. Our data indicate that HDACI-induced clusterin over-expression renders cancer cells resistant to HDACI-induced growth arrest and apoptosis, and suggests the addition of OGX-011 to HDACIs in future clinical trials in cancer patients.


Journal of Biological Chemistry | 2010

Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation.

Andrew E. Tee; Glenn M. Marshall; Pei Y. Liu; Ning Xu; Michelle Haber; Murray D. Norris; Siiri E. Iismaa; Tao Liu

We have demonstrated previously that the Myc oncoprotein blocks cancer cell differentiation by forming a novel transcriptional repressor complex with histone deacetylase and inhibiting gene transcription of tissue transglutaminase (TG2). Moreover, induction of TG2 gene transcription and transamidase activity is essential for the differentiating effects of retinoids in cancer cells. Here, we show that two structurally distinct TG2 protein isoforms, the full-length (TG2-L) and the short form (TG2-S), exert opposing effects on cell differentiation. Repression of TG2-L with small interfering RNA, which did not affect TG2-S expression, induced dramatic neuritic differentiation in neuroblastoma cells. In contrast, overexpression of TG2-S or a GTP-binding-deficient mutant of TG2-L (R580A), both of which lack the GTP-binding Arg-580 residue, induced neuroblastoma cell differentiation, which was blocked by an inhibitor of transamidase activity. Whereas N-Myc repressed and retinoid activated both TG2 isoforms, repression of TG2-L, but not simultaneous repression of TG2-L and TG2-S, enhanced neuroblastoma cell differentiation due to N-Myc small interfering RNA or retinoid. Moreover, suppression of vasoactive intestinal peptide (VIP) expression alone induced neuroblastoma cell differentiation, and VIP was up-regulated by TG2-L, but not TG2-S. Taken together, our data indicate that TG2-L and TG2-S exert opposite effects on cell differentiation due to differences in GTP binding and modulation of VIP gene transcription. Our findings highlight the potential importance of repressing the GTP binding activity of TG2-L or activating the transamidase activity of TG2-L or TG2-S for the treatment of neuroblastoma, and possibly also other Myc-induced malignancies, and for enhancing retinoid anticancer effects.


PLOS ONE | 2014

The Novel Long Noncoding RNA linc00467 Promotes Cell Survival but Is Down-Regulated by N-Myc

Bernard Atmadibrata; Pei Y. Liu; Nicolas Sokolowski; Lihong Zhang; Matthew Man-Kin Wong; Andrew E. Tee; Glenn M. Marshall; Tao Liu

The worst subtype of neuroblastoma is caused by MYCN oncogene amplification and N-Myc oncoprotein over-expression. Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and tumourigenesis. While Myc oncoproteins are well-known to exert tumourigenic effects by regulating the expression of protein-coding genes and microRNAs, little is known about which lncRNAs are Myc targets and whether the Myc target lncRNAs play a role in Myc-induced oncogenesis. Here we performed differential gene expression studies using lncRNA microarray in neuroblastoma cells after transfection with control or N-Myc-specific small interfering RNA (siRNA), and identified N-Myc target lncRNAs including the novel lncRNA linc00467, the expression and function of which were completely unknown. RT-PCR, chromatin immunoprecipitation and luciferase assays showed that N-Myc suppressed linc00467 gene expression through direct binding to the linc00467 gene promoter and reducing linc00467 promoter activity. While N-Myc suppressed the expression of RD3, the protein-coding gene immediately down-stream of linc00467 gene, through direct binding to the RD3 gene promoter and reducing RD3 promoter activity, linc00467 reduced RD3 mRNA expression. Moreover, Affymetrix microarray analysis revealed that one of genes significantly up-regulated by linc00467 siRNA was the tumour suppressor gene DKK1. Importantly, knocking-down linc00467 expression with siRNA in neuroblastoma cells reduced the number of viable cells and increased the percentage of apoptotic cells, and co-transfection with DKK1 siRNA blocked the effects. These findings therefore demonstrate that N-Myc-mediated suppression of linc00467 gene transcription counterintuitively blocks N-Myc-mediated reduction in RD3 mRNA expression, and reduces neuroblastoma cell survival by inducing DKK1 expression.


Oncotarget | 2016

The BET bromodomain inhibitor exerts the most potent synergistic anticancer effects with quinone-containing compounds and anti-microtubule drugs

Pei Y. Liu; Nicholas Sokolowski; Su T. Guo; Faraz Siddiqi; Bernard Atmadibrata; Thomas J. Telfer; Yuting Sun; Lihong Zhang; Denise M.T. Yu; Joshua A. McCarroll; Bing Liu; Rui H. Yang; Xiang Y. Guo; Andrew E. Tee; Ken Itoh; Jenny Yingzi Wang; Maria Kavallaris; Michelle Haber; Murray D. Norris; Belamy B. Cheung; Jennifer A. Byrne; David S. Ziegler; Glenn M. Marshall; Marcel E. Dinger; Rachel Codd; Xu D. Zhang; Tao Liu

BET bromodomain inhibitors are very promising novel anticancer agents, however, single therapy does not cause tumor regression in mice, suggesting the need for combination therapy. After screening a library of 2697 small molecule compounds, we found that two classes of compounds, the quinone-containing compounds such as nanaomycin and anti-microtubule drugs such as vincristine, exerted the best synergistic anticancer effects with the BET bromodomain inhibitor JQ1 in neuroblastoma cells. Mechanistically, the quinone-containing compound nanaomycin induced neuroblastoma cell death but also activated the Nrf2-antioxidant signaling pathway, and the BET bromodomain proteins BRD3 and BRD4 formed a protein complex with Nrf2. Treatment with JQ1 blocked the recruitment of Nrf2 to the antioxidant responsive elements at Nrf2 target gene promoters, and JQ1 exerted synergistic anticancer effects with nanaomycin by blocking the Nrf2-antioxidant signaling pathway. JQ1 and vincristine synergistically induced neuroblastoma cell cycle arrest at the G2/M phase, aberrant mitotic spindle assembly formation and apoptosis, but showed no effect on cell survival in normal non-malignant cells. Importantly, co-treatment with JQ1 and vincristine synergistically suppressed tumor progression in neuroblastoma-bearing mice. These results strongly suggest that patients treated with BET bromodomain inhibitors in clinical trials should be co-treated with vincristine.


European Journal of Cancer | 2012

Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase

Dora Ling; Glenn M. Marshall; Pei Y. Liu; Ning Xu; Charlotte Nelson; Siiri E. Iismaa; Tao Liu

Histone deacetylase (HDAC) inhibitors have shown promising anticancer effects in clinical trials. However, a proportion of patients do not respond to HDAC inhibitor therapy. We have previously demonstrated that tissue transglutaminase (TG2) is one of the genes commonly up-regulated by HDAC inhibitors in vitro and in vivo, and that two structurally distinct TG2 protein isoforms, the full-length (TG2-L) and the short form (TG2-S), exert opposing effects on cell differentiation due to difference in transamidation activity. Here we show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) transcriptionally activates the expression of both TG2-L and TG2-S, and that up-regulation of TG2-L renders neuroblastoma cells less sensitive to SAHA-induced cytotoxicity. Combination therapy with SAHA and the transamidation activator Naringenin, a natural product found in citrus fruits, synergistically enhanced transamidation activity and SAHA-induced cytotoxicity in neuroblastoma cells, but not in normal non-malignant cells. In tumour-bearing N-Myc transgenic mice, SAHA and Naringenin synergistically suppressed tumour progression. Taken together, our data demonstrate that SAHA-induced TG2-L over-expression renders cancer cells less sensitive to SAHA therapy, and suggest the addition of Naringenin to SAHA and probably also other HDAC inhibitors in future clinical trials in cancer patients.


Archive | 2012

Neuroblastoma: A Malignancy Due to Cell Differentiation Block

Andrew E. Tee; Pei Y. Liu; Glenn M. Marshall; Tao Liu

Neuroblastoma originates from precursor neuroblasts of the sympathetic nervous system. Unlike most other cancer types, neuroblastoma is characterized by a unique capacity for spontaneous complete regression, at least partly through neuronal differentiation, in a proportion of patients, and is therefore regarded as a cancer due to cell differentiation block. The first demonstration of in vitro differentiation of human neuroblastoma cells was published 30 years ago, when human SK-N-SH and SH-SY5Y neuroblastoma cells were shown to differentiate morphologically (neurite outgrowth) and biochemically in response to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) treatment (Pahlman et al., 1981). The differentiated cells showed an increased expression of noradrenaline, adrenaline and neuron-specific enolase (NSE), differentiation markers which are employed for the diagnosis of neuroblastoma in patients. In 1982, retinoic acid (RA) was shown to induce concentrationdependent morphologic differentiation and growth inhibition in the LA-N-1 human neuroblastoma cell line (Sidell, 1982). The RA-induced morphologic differentiation and growth inhibition persisted despite removal of the drug. These observations demonstrate that RA promotes the differentiation of LA-N-1 neuroblastoma cells and results in a reduced expression of the malignant phenotype, and suggest that patients with advanced neuroblastoma may be successfully treated by RA to induce their tumour cells to differentiate and to undergo growth inhibition. In the last three decades, a number of factors, such as up-regulation of the expression of retinoic acid receptors, have been identified as crucial for the induction or blockage of neuroblastoma cell differentiation. Importantly, naturally occurring and synthetic retinoids have shown great promise in the clinic when used as differentiation agents in neuroblastoma patients with minimal residual disease, while the mechanism of retinoid anticancer signalling in neuroblastoma is still not fully understood (Liu et al., 2005; Reynolds et al., 2003).


International Journal of Oncology | 2016

NCYM is upregulated by lncUSMycN and modulates N-Myc expression

Pei Y. Liu; Bernard Atmadibrata; Sujanna Mondal; Andrew E. Tee; Tao Liu

Neuroblastoma is the most common solid tumor in early childhood. Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN, MYCN antisense NCYM and lncUSMycN genes show poor prognosis. BET bromodomain inhibitors show anticancer efficacy against neuroblastoma partly by reducing MYCN gene transcription and N-Myc mRNA and protein expression. We have previously shown that the long nocoding RNA lncUSMycN upregulates N-Myc mRNA expression by binding to the RNA-binding protein NonO. In this study, we found that lncUSMycN upregulated NCYM expression, and knocking-down lncUSMycN reduced histone H3 lysine 4 trimethylation, a marker for active gene transcription, at the NCYM gene promoter. NCYM upregulated N-Myc mRNA expression, NCYM RNA formed a complex with NonO protein, and knocking down NCYM expression reduced neuroblastoma cell proliferation. Importantly, treatment with BET bromodomain inhibitors reduced NCYM expression. In human neuroblastoma patients, high levels of NCYM expression in tumor tissues correlated with high levels of N-Myc, NonO and lncUSMycN expression as well as poor patient prognosis. Taken together, our findings suggest that lncUSMycN upregulates NCYM expression by activating its gene transcription, and that NCYM RNA upregulates N-Myc mRNA expression by binding to NonO. Our findings also provide further evidence for the application of BET bromodomain inhibitors for the therapy of neuroblastoma characterized by MYCN/NCYM gene locus amplification.

Collaboration


Dive into the Pei Y. Liu's collaboration.

Top Co-Authors

Avatar

Tao Liu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Glenn M. Marshall

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Tee

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Bernard Atmadibrata

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Michelle Haber

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Murray D. Norris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ning Xu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Marcel E. Dinger

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Dora Ling

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge