Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per-Ove Sjöquist is active.

Publication


Featured researches published by Per-Ove Sjöquist.


Hypertension | 1999

Mechanistic Differences of Various AT1-Receptor Blockers in Isolated Vessels of Different Origin

Peter Morsing; Gunnel Adler; Ulla Brandt-Eliasson; Linda Karp; Kristina Ohlson; Lars Renberg; Per-Ove Sjöquist; Tommy Abrahamsson

The functional inhibitory characteristics of the angiotensin II type 1 receptor blockers (ARB) candesartan; irbesartan; and losartan and its active metabolite EXP 3174 (EXP) were studied in rabbit aortic strips and rat portal vein preparations in vitro. Moreover, plasma-protein binding was determined, and the binding was high (>98. 5%) for all ARBs. These values were needed to relate the concentrations of the ARBs used in vitro to the nonprotein bound concentrations in clinical use. In both vascular preparations, candesartan caused a marked decrease in the maximal contractile response of the angiotensin II (Ang II) concentration-response curve. Losartan, EXP, and irbesartan caused a rightward parallel shift without any major effects on the maximal response to Ang II. The inhibitory effect of candesartan developed slowly (maximal effect after >30 minutes) and lasted >2 hours despite repeated washing of the vessels. The effect of losartan, irbesartan, and EXP had a faster onset, and most of the inhibitory effect disappeared after washing. The duration of the inhibitory effects of the ARBs were not related to lipophilicity of the compounds. Cooling of the rat portal vein preparations to 4 degrees C before administration of candesartan prevented the persistent inhibition of Ang II response seen at 37 degrees C. For the other ARBs studied, the magnitude of inhibition and the speed of recovery of the Ang II response were independent of the incubation temperature before washing. In addition, when candesartan was given to conscious rats, the inhibitory effect on Ang II-induced blood pressure responses persisted during the 24-hour period despite nondetectable plasma concentrations of candesartan at 24 hours. It is concluded that functional inhibitory characteristics of candesartan differ from those of the other ARBs tested. At clinically relevant concentrations, candesartan is an insurmountable and long-lasting antagonist of the vascular contractile responses to Ang II.


American Journal of Physiology-heart and Circulatory Physiology | 2009

PPAR-α activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway

Aliaksandr Bulhak; Christian Jung; Claes-Göran Östenson; Jon O. Lundberg; Per-Ove Sjöquist; John Pernow

Several clinical studies have shown the beneficial cardiovascular effects of fibrates in patients with diabetes and insulin resistance. The ligands of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) reduce ischemia-reperfusion injury in nondiabetic animals. We hypothesized that the activation of PPAR-alpha would exert cardioprotection in type 2 diabetic Goto-Kakizaki (GK) rats, involving mechanisms related to nitric oxide (NO) production via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. GK rats and age-matched Wistar rats (n >or= 7) were given either 1) the PPAR-alpha agonist WY-14643 (WY), 2) dimethyl sulfoxide (DMSO), 3) WY and the NO synthase inhibitor N(G)-nitro-l-arginine (l-NNA), 4) l-NNA, 5) WY and the PI3K inhibitor wortmannin, or 6) wortmannin alone intravenously before a 35-min period of coronary artery occlusion followed by 2 h of reperfusion. Infarct size (IS), expression of endothelial NO synthase (eNOS), inducible NO synthase, and Akt as well as nitrite/nitrate were determined. The IS was 75 +/- 3% and 72 +/- 4% of the area at risk in the Wistar and GK DMSO groups, respectively. WY reduced IS to 56 +/- 3% in Wistar (P < 0.05) and to 46 +/- 5% in GK rats (P < 0.001). The addition of either l-NNA or wortmannin reversed the cardioprotective effect of WY in both Wistar (IS, 70 +/- 5% and 65 +/- 5%, respectively) and GK (IS, 66 +/- 4% and 64 +/- 4%, P < 0.05, respectively) rats. The expression of eNOS and eNOS Ser1177 in the ischemic myocardium from both strains was increased after WY. The expression of Akt, Akt Ser473, and Akt Thr308 was also increased in the ischemic myocardium from GK rats following WY. Myocardial nitrite/nitrate levels were reduced in GK rats (P < 0.05). The results suggest that PPAR-alpha activation protects the type 2 diabetic rat myocardium against ischemia-reperfusion injury via the activation of the PI3K/Akt and NO pathway.


Cardiovascular Research | 2010

Arginase inhibition mediates cardioprotection during ischaemia-reperfusion.

Christian Jung; Adrian Gonon; Per-Ove Sjöquist; Jon O. Lundberg; John Pernow

AIMS Nitric oxide (NO) is vital for the integrity of the cardiovascular system and protection against ischaemic heart disease. Arginase is up-regulated during ischaemia-reperfusion (IR) and this enzyme might compete with NO synthase (NOS) for arginine. The present study investigated whether arginase blockade protects from myocardial IR injury and whether such an effect is coupled to increased NO bioavailability. METHODS AND RESULTS Sprague-Dawley rats were subjected to 30 min of coronary artery ligation, followed by 2 h of reperfusion. The animals were given either saline, or the arginase inhibitor N-omega-hydroxy-nor-l-arginine (nor-NOHA) with or without the NO scavenger carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) or the NOS inhibitor N(G)-monomethyl-l-arginine (l-NMMA) iv 15 min before ischaemia. The infarct size was 79 +/- 4% of the area at risk in the control group. Nor-NOHA treatment reduced the infarct size to 39 +/- 7% (P < 0.001). Administration of cPTIO or l-NMMA completely abolished the protective effect of nor-NOHA. Expression of arginase I was significantly (P < 0.05) increased in ischaemic myocardium. Nor-NOHA treatment resulted in higher plasma levels of nitrite (P < 0.05) and a 10-fold increase in the citrulline/ornithine ratio (P < 0.001), indicating a shift in arginine utilization towards NOS. CONCLUSION Inhibition of arginase protects from myocardial infarction by a mechanism that is dependent on NOS activity and bioavailability of NO by shifting arginine utilization from arginase towards NOS. These findings suggest that targeting of arginase is a promising future therapeutic strategy for protection against myocardial IR injury.


Experimental Physiology | 2012

Remote ischaemic pre- and delayed postconditioning - similar degree of cardioprotection but distinct mechanisms.

Marina Basalay; Veronika Barsukevich; Svetlana Mastitskaya; Alexander Mrochek; John Pernow; Per-Ove Sjöquist; Gareth L. Ackland; Alexander V. Gourine; Andrey Gourine

Myocardial ischaemia–reperfusion injury can be significantly reduced by an episode(s) of ischaemia–reperfusion applied prior to or during myocardial ischaemia (MI) to peripheral tissue located at a distance from the heart; this phenomenon is called remote ischaemic conditioning (RIc). Here, we compared the efficacy of RIc in protecting the heart when the RIc stimulus is applied prior to, during and at different time points after MI. A rat model of myocardial ischaemia–reperfusion injury involved 30 min of left coronary artery occlusion followed by 120 min of reperfusion. Remote ischaemic conditioning was induced by 15 min occlusion of femoral arteries and conferred a similar degree of cardioprotection when applied 25 min prior to MI, 10 or 25 min after the onset of MI, or starting 10 min after the onset of reperfusion. These RIc stimuli reduced infarct size by 54, 56, 56 and 48% (all P < 0.001), respectively. Remote ischaemic conditioning applied 30 min into the reperfusion period was ineffective. Activation of sensory nerves by application of capsaicin was effective in establishing cardioprotection only when elicited prior to MI. Vagotomy or denervation of the peripheral ischaemic tissue both completely abolished cardioprotection induced by RIc applied prior to MI. Cardioprotection conferred by delayed remote postconditioning was not affected by either vagotomy or peripheral denervation. These results indicate that RIc confers potent cardioprotection even if applied with a significant delay after the onset of myocardial reperfusion. Cardioprotection by remote preconditioning is critically dependent on afferent innervation of the remote organ and intact parasympathetic activity, while delayed remote postconditioning appears to rely on a different signalling pathway(s).


Basic Research in Cardiology | 2007

Cardioprotection mediated byrosiglitazone, a peroxisome proliferatoractivatedreceptor gamma ligand,in relation to nitric oxide

Adrian Gonon; Aliaksandr Bulhak; Fausto Labruto; Per-Ove Sjöquist; John Pernow

AbstractActivation of peroxisome proliferator-activated receptor (PPAR) gamma protects from myocardial ischemia/reperfusion injury. The aim of the study was to investigate whether the cardioprotective effect of PPARgamma is related to nitric oxide (NO).MethodsWild type (WT) and endothelial NO synthase (eNOS) knockout (KO) mice received 3 mg/kg of the PPARgamma agonist rosiglitazone or vehicle (n = 6–9 in each group) i. p. 45 min before anesthesia. The hearts were isolated, perfused in a Langendorff mode and subjected to global ischemia and 30 min reperfusion. The hearts of another two groups ofWT mice received the NOS inhibitor L-NNA (100 ìmol/l) or vehicle in addition to pre-treatment with vehicle or rosiglitazone.ResultsIn the WT heart, rosiglitazone increased the recovery of left ventricular function and coronary flow following ischemia in comparison with the vehicle group.L-NNA did not affect recovery per se but significantly blunted the improvement in the recovery of left ventricular function induced by rosiglitazone. In the KO group rosiglitazone suppressed the recovery of myocardial function following ischemia. Expression of eNOS was not affected, but phosphorylated eNOS was significantly increased by rosiglitazone in the WT hearts (P < 0.05).ConclusionThese results suggest that the cardioprotective effect of the PPARgamma agonist rosiglitazone is mediated via NO by phosphorylation of eNOS.


Current Pharmaceutical Design | 2007

Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity : Neuroprotective effects of a new antioxidant compound H-290/51

Hari Shanker Sharma; Per-Ove Sjöquist; Syed F. Ali

The psychostimulants, morphine and methamphetamine are well known drugs of abuse that induce brain pathology and/or neurodegeneration resulting in a huge burden on our society. The possible mechanisms of psychostimulants induced neuropathology and neurodegeneration are still not well known. The drugs of abuse results in profound hyperthermia and widespread alterations in neurochemical metabolism in the central nervous system (CNS). It appears that psychostimulants induced hyperthermia and/or release of neurochemicals influence the blood-brain barrier (BBB) dysfunction leading to brain pathology. The drugs of abuse also induce oxidative stress resulting in generation of free radicals and lipid peroxidation. Thus, further research is needed to understand the basic function of BBB disruption and temperature regulation by psychostimulants and to modify them pharmacologically to attenuate brain dysfunction and neuropathology. This review is focused on the problems of morphine and methamphetamine induced hyperthermia and their effects on breakdown of the BBB function leading to brain damage. Work done in our laboratory suggest that hyperthermia caused by these drugs is responsible for BBB disruption and neurodegeneration. This hypothesis is further supported by our observation that pretreatment with a potent antioxidant compound H-290/51 attenuates the BBB disruption and induces marked neuroprotection following morphine induced withdrawal and methamphetamine induced neurotoxicity. The possible mechanisms and functional significance of these findings are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity

Jiangning Yang; Adrian Gonon; Per-Ove Sjöquist; Jon O. Lundberg; John Pernow

Significance Nitric oxide from endothelial cells is important for regulating cardiovascular function. Recent data suggest that red blood cells are a source for nitric oxide. We examined the function of red blood cell nitric oxide and the regulation of its formation by the enzyme arginase. We show that red blood cells contain arginase that inhibits nitric oxide export. The function was tested in a heart model subjected to ischemia. The recovery of heart function after ischemia was improved following inhibition of red blood cell arginase. This effect depended on the specific protein producing nitric oxide. The results demonstrate an important function by red blood cells in regulating heart function during ischemia via nitric oxide production under tight control by arginase. The theory that red blood cells (RBCs) generate and release nitric oxide (NO)-like bioactivity has gained considerable interest. However, it remains unclear whether it can be produced by endothelial NO synthase (eNOS), which is present in RBCs, and whether NO can escape scavenging by hemoglobin. The aim of this study was to test the hypothesis that arginase reciprocally controls NO formation in RBCs by competition with eNOS for their common substrate arginine and that RBC-derived NO is functionally active following arginase blockade. We show that rodent and human RBCs contain functional arginase 1 and that pharmacological inhibition of arginase increases export of eNOS-derived nitrogen oxides from RBCs under basal conditions. The functional importance was tested in an ex vivo model of myocardial ischemia-reperfusion injury. Inhibitors of arginase significantly improved postischemic functional recovery in rat hearts if administered in whole blood or with RBCs in plasma. By contrast, arginase inhibition did not improve postischemic recovery when administered with buffer solution or plasma alone. The protective effect of arginase inhibition was lost in the presence of a NOS inhibitor. Moreover, hearts from eNOS−/− mice were protected when the arginase inhibitor was given with blood from wild-type donors. In contrast, when hearts from wild-type mice were given blood from eNOS−/− mice, the arginase inhibitor failed to protect against ischemia-reperfusion. These results strongly support the notion that RBCs contain functional eNOS and release NO-like bioactivity. This process is under tight control by arginase 1 and is of functional importance during ischemia-reperfusion.


Biochemical Pharmacology | 1996

Characterization of novel indenoindoles. Part I. Structure-activity relationships in different model systems of lipid peroxidation.

Christer Westerlund; Ann-Margret Östlund-Lindqvist; Malcolm Sainsbury; Howard G. Shertzer; Per-Ove Sjöquist

Structure-activity relationships are presented for some representative compounds from a novel series of potent inhibitors of lipid peroxidation. The compounds are indenoindole derivatives with oxidation potentials in organic solvents of between 0.2 and 1.5 V. Two of these compounds, cis-5,5a,6,10b-tetrahydro-9-methoxy-7-methylindeno[2,1-b]indole (H 290/51) with an oxidation potential of 0.32 V and cis-4b,5,9b,10- tetrahydro-8-methoxy-6-methylindeno[1,2-b]indole (H 290/30) with an oxidation potential of 0.30 V, have been tested more extensively and compared with reference compounds in several pharmacological models of lipid peroxidation. The inhibitory potencies (pIC50) of the compounds in respect to Fe/Ascorbate-induced production of thiobarbituric acid-reactive substances (TBARS) in a suspension of purified soybean lecithin were calculated. These data are 8.2 for H 290/51; 8.0 for H 290/30; 5.6 for vitamin E; and 6.6 for butylated hydroxytoluene (BHT). In isolated rat renal tissue subjected to hypoxia and reoxygenation, the potency for inhibition of TBARS formation is 6.9 for H 290/51, 6.9 for H 290/30, and <5 for vitamin E. In oxidative modification of low-density lipoproteins (LDL) induced by mouse peritoneal macrophages, the corresponding pIC50 values for TBARS inhibition for each compound are: 8.7, 8.3, <5, and 6.9, respectively. It is concluded that the synthetic indenoindoles are potent antioxidants. The results suggest that indenoindoles such as H 290/51 and H 290/30 could be useful as therapeutic agents in pathophysiological situations where lipid peroxidation plays an important role.


PLOS ONE | 2012

Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production.

Adrian Gonon; Christian Jung; Abram Katz; Håkan Westerblad; Alexey Shemyakin; Per-Ove Sjöquist; Jon Lundberg; John Pernow

Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion. The pigs were randomized to intracoronary infusion of vehicle (n = 7), the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA, 2 mg/min, n = 7), the combination of nor-NOHA and the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.35 mg/min, n = 6) into the jeopardized myocardial area or systemic intravenous infusion of nor-NOHA (2 mg/min, n = 5) at the end of ischemia and start of reperfusion. The infarct size of the vehicle group was 80±4% of the area at risk. Intracoronary nor-NOHA reduced infarct size to 46±5% (P<0.01). Co-administration of L-NMMA abrogated the cardioprotective effect mediated by nor-NOHA (infarct size 72±6%). Intravenous nor-NOHA did not reduce infarct size. Arginase I and II were expressed in cardiomyocytes, endothelial, smooth muscle and poylmorphonuclear cells. There was no difference in cytosolic arginase I or mitochondrial arginase II expression between ischemic-reperfused and non-ischemic myocardium. Arginase activity increased 2-fold in the ischemic-reperfused myocardium in comparison with non-ischemic myocardium. In conclusion, ischemia-reperfusion increases arginase activity without affecting cytosolic arginase I or mitochondrial arginase II expression. Local arginase inhibition during early reperfusion reduces infarct size via a mechanism that is dependent on increased bioavailability of NO.


Journal of Cardiovascular Pharmacology | 1995

Myocardial Release of Endothelin (ET) and Enhanced ETA Receptor-Mediated Coronary Vasoconstriction After Coronary Thrombosis and Thrombolysis in Pigs

Qing-Dong Wang; Yozo Uriuda; John Pernow; Anette Hemsén; Per-Ove Sjöquist; Lars Rydén

We investigated changes in vascular reactivity to endothelin (ET) and local release of ET-like immunoreactivity (ET-LI) induced by myocardial ischemia and reperfusion in a pig model of coronary thrombosis and thrombolysis and studied the possible mechanisms producing the changed vascular reactivity to ET-1. We induced coronary thrombosis by inserting a copper coil into the left anterior descending coronary artery (LAD) and achieved thrombolysis with tissue plasminogen activator (t-PA). Vascular reactivity to ET-1 in the nonischemic and ischemic/reperfused LAD diagonal branches was evaluated in vitro. ET-LI was analyzed in plasma from the great cardiac vein and aorta for estimation of local release. The vasoconstrictor response to ET-1 was enhanced twofold (p < 0.01) in the ischemic/reperfused arteries as compared with the nonischemic arteries. The vasoconstriction induced by the ETB receptor agonist [Ala 1,3,11,15] ET-1 or serotonin was not significantly affected by ischemia/reperfusion. The ETA receptor antagonist BQ-123 reversed the ET-1-induced vascular contraction to a similar degree in ischemic/reperfused and control arteries. The ET-1-induced vasoconstriction of control arteries was not affected by inhibition of nitric oxide (NO) synthase with NG-nitro-L-arginine (L-NNA) or cyclooxygenase with indomethacin. During reperfusion, the myocardial venoarterial plasma concentration difference of ET-LI and blood flow increased, resulting in an increased overflow of ET-LI. Our results demonstrate that coronary thrombosis and thrombolysis evokes enhanced local release of ET-LI during the reperfusion period and increases the vasoconstrictor effects of ET-1 through a mechanism related to ETA receptor activation but unrelated to altered endothelial function. These changes may play a role in the development of ischemic/reperfusion injury and no-reflow phenomenon.

Collaboration


Dive into the Per-Ove Sjöquist's collaboration.

Top Co-Authors

Avatar

Lars Rydén

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Pernow

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Adrian Gonon

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M. Carter

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Andrey Gourine

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yozo Uriuda

National Defense Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge