Peramaiyan Rajendran
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peramaiyan Rajendran.
British Journal of Pharmacology | 2010
Feng Li; Peramaiyan Rajendran; Gautam Sethi
BACKGROUND AND PURPOSE Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) pathway is frequently encountered in several human cancers including multiple myeloma (MM). Thus, agents that suppress STAT3 phosphorylation have a potential for treatment of MM. In the present report, we investigated whether thymoquinone (TQ), the main component isolated from the medicinal plant Nigella sativa, modulated the STAT3 signalling pathway in MM cells.
Cancer Letters | 2010
Feng Li; Prasana Priscilla Fernandez; Peramaiyan Rajendran; Kam M. Hui; Gautam Sethi
Constitutive activation of STAT3 has been shown in several human cancers and transformed cell lines including hepatocellular carcinoma (HCC). In the present report, we investigated whether diosgenin, a steroidal saponin isolated from fenugreek can modulate the STAT3 signaling pathway. We found that diosgenin inhibited both constitutive and inducible activation of STAT3 with no effect on STAT5. The activation of c-Src, JAK1 and JAK2 implicated in STAT3 activation, were also suppressed by this saponin. Pervanadate reversed the diosgenin-induced downregulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that diosgenin can induce the expression of Src homology 2 phosphatase 2 (SH-PTP2) that correlated with downregulation of constitutive STAT3 activation. Diosgenin also downregulated the expression of various STAT3-regulated gene products, inhibited proliferation and potentiated the apoptotic effects of paclitaxel and doxorubicin. Overall, these results suggest that diosgenin is a novel blocker of the STAT3 activation pathway, with a potential role in the treatment of HCC and other cancers.
Clinical Cancer Research | 2011
Peramaiyan Rajendran; Tina H. Ong; Luxi Chen; Feng Li; Muthu K. Shanmugam; Shireen Vali; Taher Abbasi; Shweta Kapoor; Ashish Sharma; Alan Prem Kumar; Kam M. Hui; Gautam Sethi
Purpose: Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third cause of global cancer mortality. Increasing evidence suggest that STAT3 is a critical mediator of oncogenic signaling in HCC and controls the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. Thus, the novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Experimental Design: The effect of butein on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was investigated. The in vivo effect of butein on the growth of human HCC xenograft tumors in male athymic nu/nu mice was also examined. Results: We tested an agent, butein, for its ability to suppress STAT3 activation in HCC cells and nude mice model along with prospectively testing the hypothesis of STAT3 inhibition in a virtual predictive functional proteomics tumor pathway technology platform. We found that butein inhibited both constitutive and inducible STAT3 activation in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src and Janus-activated kinase 2. Butein inhibited proliferation and significantly potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. When administered intraperitoneally, butein inhibited the growth of human HCC xenograft tumors in male athymic nu/nu mice. Conclusions: Overall, cumulative results from experimental and predictive studies suggest that butein exerts its antiproliferative and proapoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo. Clin Cancer Res; 17(6); 1425–39. ©2010 AACR.
Cancer Prevention Research | 2012
Peramaiyan Rajendran; Feng Li; Muthu K. Shanmugam; Radhamani Kannaiyan; Jen Nee Goh; Kwong-Fai Wong; Wei Wang; Ester Khin; Vinay Tergaonkar; Alan Prem Kumar; John M. Luk; Gautam Sethi
Cumulative evidences(s) have established that the constitutive activation of STAT3 plays a pivotal role in the proliferation, survival, metastasis, and angiogenesis and thus can contribute directly to the pathogenesis of hepatocellular carcinoma (HCC). Thus, novel agents that can inhibit STAT3 activation have potential for both prevention and treatment of HCCs. The effect of celastrol on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was investigated. The in vivo effect of celastrol on the growth of human HCC xenograft tumors in athymic nu/nu mice was also examined. We observed that celastrol inhibited both constitutive and inducible STAT3 activation, and the suppression was mediated through the inhibition of activation of upstream kinases c-Src, as well as Janus-activated kinase-1 and -2. Vanadate treatment reversed the celastrol-induced modulation of STAT3, suggesting the involvement of a tyrosine phosphatase. The inhibition of STAT3 activation by celastrol led to the suppression of various gene products involved in proliferation, survival, and angiogenesis. Celastrol also inhibited the proliferation and induced apoptosis in HCC cells. Finally, when administered intraperitoneally, celastrol inhibited STAT3 activation in tumor tissues and the growth of human HCC xenograft tumors in athymic nu/nu mice without any side effects. Overall, our results suggest for the first time that celastrol exerts its antiproliferative and proapoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo. Cancer Prev Res; 5(4); 631–43. ©2012 AACR.
British Journal of Pharmacology | 2011
Radhamani Kannaiyan; Hui Sin Hay; Peramaiyan Rajendran; Feng Li; Muthu K. Shanmugam; Shireen Vali; Taher Abbasi; Shweta Kapoor; Ashish Sharma; Alan Prem Kumar; Wee Joo Chng; Gautam Sethi
BACKGROUND AND PURPOSE Activation of pro‐inflammatory transcription factors NF‐κB and signal transducer and activator of transcription 3 (STAT3) is one of the major contributors to both pathogenesis and chemoresistance in multiple myeloma (MM), which results in high mortality rate. Thus, in the present study, we investigated whether celastrol could suppress the proliferation and induce chemosensitization of MM cells by interfering with NF‐κB and STAT3 activation pathways.
Molecular Cancer | 2011
Kanjoormana Aryan Manu; Muthu K. Shanmugam; Peramaiyan Rajendran; Feng Li; Hui Sin Hay; Radhamani Kannaiyan; Shivananju Nanjunda Swamy; Shireen Vali; Shweta Kapoor; Bhargavi Ramesh; Pradeep Bist; Evelyn Siew-Chuan Koay; Lina Hk Lim; Kwang Seok Ahn; Alan Prem Kumar; Gautam Sethi
BackgroundIncreasing evidence indicates that the interaction between the CXC chemokine receptor-4 (CXCR4) and its ligand CXCL12 is critical in the process of metastasis that accounts for more than 90% of cancer-related deaths. Thus, novel agents that can downregulate the CXCR4/CXCL12 axis have therapeutic potential in inhibiting cancer metastasis.MethodsIn this report, we investigated the potential of an agent, plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), for its ability to modulate CXCR4 expression and function in various tumor cells using Western blot analysis, DNA binding assay, transient transfection, real time PCR analysis, chromatin immunoprecipitation, and cellular migration and invasion assays.ResultsWe found that plumbagin downregulated the expression of CXCR4 in breast cancer cells irrespective of their HER2 status. The decrease in CXCR4 expression induced by plumbagin was not cell type-specific as the inhibition also occurred in gastric, lung, renal, oral, and hepatocellular tumor cell lines. Neither proteasome inhibition nor lysosomal stabilization had any effect on plumbagin-induced decrease in CXCR4 expression. Detailed study of the underlying molecular mechanism(s) revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, inhibition of NF-κB activation, and suppression of chromatin immunoprecipitation activity. In addition, using a virtual, predictive, functional proteomics-based tumor pathway platform, we tested the hypothesis that NF-κB inhibition by plumbagin causes the decrease in CXCR4 and other metastatic genes. Suppression of CXCR4 expression by plumbagin was found to correlate with the inhibition of CXCL12-induced migration and invasion of both breast and gastric cancer cells.ConclusionsOverall, our results indicate, for the first time, that plumbagin is a novel blocker of CXCR4 expression and thus has the potential to suppress metastasis of cancer.
British Journal of Pharmacology | 2011
Peramaiyan Rajendran; Feng Li; Kanjoormana Aryan Manu; Muthu K. Shanmugam; Alan Prem Kumar; Gautam Sethi
Activation of signal transducer and activator of transcription 3 (STAT3) play a critical role in the survival, proliferation, angiogenesis and chemoresistance of tumour cells. Thus, agents that suppress STAT3 phosphorylation have potential as cancer therapies. In the present study, we investigated whether the apoptotic, antiproliferative and chemosensitizing effects of γ‐tocotrienol are associated with its ability to suppress STAT3 activation in hepatocellular carcinoma (HCC).
Journal of Cellular Physiology | 2012
Peramaiyan Rajendran; Feng Li; Muthu K. Shanmugam; Shireen Vali; Taher Abbasi; Shweta Kapoor; Kwang Seok Ahn; Alan Prem Kumar; Gautam Sethi
The activation of signal transducers and activators of transcription 3 (STAT3) has been closely linked with the proliferation, survival, invasion, and angiogenesis of hepatocellular carcinoma (HCC) and represents an attractive target for therapy. In the present report, we investigated whether honokiol mediates its effect through interference with the STAT3 activation pathway. The effect of honokiol on STAT3 activation, associated protein kinases, and phosphatase, STAT3‐regulated gene products and apoptosis was investigated using both functional proteomics tumor pathway technology platform and different HCC cell lines. We found that honokiol inhibited both constitutive and inducible STAT3 activation in a dose‐ and time‐dependent manner in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c‐Src, Janus‐activated kinase 1, and Janus‐activated kinase 2. Vanadate treatment reversed honokiol‐induced down‐regulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that honokiol induced the expression of tyrosine phosphatase SHP‐1 that correlated with the down‐regulation of constitutive STAT3 activation. Moreover, deletion of SHP‐1 gene by siRNA abolished the ability of honokiol to inhibit STAT3 activation. The inhibition of STAT3 activation by honokiol led to the suppression of various gene products involved in proliferation, survival, and angiogenesis. Finally, honokiol inhibited proliferation and significantly potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. Overall, the results suggest that honokiol is a novel blocker of STAT3 activation and may have a great potential for the treatment of HCC and other cancers. J. Cell. Physiol. 227: 2184–2195, 2012.
Molecular Cancer | 2014
Gautam Sethi; Snehajyoti Chatterjee; Peramaiyan Rajendran; Feng Li; Muthu K. Shanmugam; Kwong-Fai Wong; Alan Prem Kumar; Parijat Senapati; Amit K. Behera; Kam M. Hui; Jeelan Basha; Nagashayana Natesh; John M. Luk; Tapas K. Kundu
BackgroundConstitutive activation of signal transducer and activator of transcription 3 (STAT3) has been linked with proliferation, survival, invasion and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Thus, novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Here we report, garcinol, a polyisoprenylated benzophenone, could suppress STAT3 activation in HCC cell lines and in xenografted tumor of HCC in nude mice model.Experimental designDifferent HCC cell lines have been treated with garcinol and the inhibition of STAT3 activation, dimerization and acetylation have been checked by immunoblotting, immuno-fluorescence, and DNA binding assays. Xenografted tumor model has been generated in nude mice using HCC cell line and effect of garcinol in the inhibition of tumor growth has been investigated.ResultsGarcinol could inhibit both constitutive and interleukin (IL-6) inducible STAT3 activation in HCC cells. Computational modeling showed that garcinol could bind to the SH2 domain of STAT3 and suppress its dimerization in vitro. Being an acetyltransferase inhibitor, garcinol also inhibits STAT3 acetylation and thus impairs its DNA binding ability. The inhibition of STAT3 activation by garcinol led to the suppression of expression of various genes involved in proliferation, survival, and angiogenesis. It also suppressed proliferation and induced substantial apoptosis in HCC cells. Remarkably, garcinol inhibited the growth of human HCC xenograft tumors in athymic nu/nu mice, through the inhibition of STAT3 activation.ConclusionOverall, our results suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.
Molecular Carcinogenesis | 2015
Muthu K. Shanmugam; Peramaiyan Rajendran; Feng Li; Chulwon Kim; Sakshi Sikka; Kodappully Sivaraman Siveen; Alan Prem Kumar; Kwang Seok Ahn; Gautam Sethi
Persistent activation of signal transducer and activator of transcription 3 (STAT3) is one of the characteristic features of renal cell carcinoma (RCC) and often linked to its deregulated proliferation, survival, and angiogenesis. In the present report, we investigated whether zerumbone, a sesquiterpene, exerts its anticancer effect through modulation of STAT3 activation pathway. The pharmacological effect of zerumbone on STAT3 activation, associated protein kinases and phosphatase, and apoptosis was investigated using both RCC cell lines and xenograft mouse model. We observed that zerumbone suppressed STAT3 activation in a dose‐ and time‐dependent manner in RCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c‐Src, Janus‐activated kinase 1, and Janus‐activated kinase 2. Pervanadate treatment reversed zerumbone‐induced downregulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that zerumbone induced the expression of tyrosine phosphatase SHP‐1 that correlated with its ability to inhibit STAT3 activation. Interestingly, deletion of SHP‐1 gene by siRNA abolished the ability of zerumbone to inhibit STAT3 activation. The inhibition of STAT3 activation by zerumbone also caused the suppression of the gene products involved in proliferation, survival, and angiogenesis. Finally, when administered i.p., zerumbone inhibited STAT3 activation in tumor tissues and the growth of human RCC xenograft tumors in athymic nu/nu mice without any side effects. Overall, our results suggest for the first time that zerumbone is a novel blocker of STAT3 signaling cascade and thus has an enormous potential for the treatment of RCC and other solid tumors.