Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Perry Johnson is active.

Publication


Featured researches published by Perry Johnson.


Medical Physics | 2011

Skin dose mapping for fluoroscopically guided interventions

Perry Johnson; David Borrego; Stephen Balter; Kevin Johnson; Daniel Siragusa; Wesley E. Bolch

PURPOSE To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. METHODS In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patients skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. RESULTS Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional fluoroscopy system. CONCLUSIONS The skin dose mapping program developed in this work represents a new tool that, as the RDSR becomes available through automated export or real-time streaming, can provide the interventional physician information needed to modify behavior when clinically appropriate. The program is nonproprietary and transferable, and also functions independent to the software systems already installed on the control room workstation. The next step will be clinical implementation where the workflow will be optimized along with further analysis of real-time capabilities.


Physics in Medicine and Biology | 2011

An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

Matthew Hough; Perry Johnson; Didier A. Rajon; Derek W. Jokisch; Choonsik Lee; Wesley E. Bolch

In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRPs change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal-averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.


Physics in Medicine and Biology | 2011

Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.

Perry Johnson; Amir A. Bahadori; Keith F. Eckerman; Choonsik Lee; Wesley E. Bolch

A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.


Physics in Medicine and Biology | 2009

The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization.

Perry Johnson; Choonsik Lee; Kevin Johnson; Daniel Siragusa; Wesley E. Bolch

In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure-cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.


Radiation and Environmental Biophysics | 2010

Hybrid computational phantoms for medical dose reconstruction

Wesley E. Bolch; Choonsik Lee; Michael Wayson; Perry Johnson

As outlined in NCRP Report No. 160 of the US National Council on Radiation Protection and Measurements (NCRP), the average value of the effective dose to exposed individuals in the United States has increased by a factor of 1.7 over the time period 1982–2006, with the contribution of medical exposures correspondingly increasing by a factor of 5.7. At present, medical contributors to effective dose include computed tomography (50% of total medical exposure), nuclear medicine (25%), interventional fluoroscopy (15%), and conventional radiography and diagnostic fluoroscopy (10%). An increased awareness of medical exposures has led to a gradual shift in the focus of radiation epidemiological studies from traditional occupational and environmental exposures to those focusing on cohorts of medical patients exposed to both diagnostic and therapeutic sources. The assignment of organ doses to patients in either a retrospective or a prospective study has increasingly relied on the use of computational anatomic phantoms. In this paper, we review the various methods and approaches used to construct patient models to include anthropometric databases, cadaver imaging, prospective volunteer imaging studies, and retrospective image reviews. Phantom format types—stylized, voxel, and hybrid—as well as phantom morphometric categories—reference, patient-dependent, and patient-specific—are next defined and discussed. Specific emphasis is given to hybrid phantoms—those defined through the use of combinations of polygon mesh and non-uniform rational B-spline (NURBS) surfaces. The concept of a patient-dependent phantom is reviewed, in which phantoms of non-50th percentile heights and weights are designed from population-based morphometric databases and provided as a larger library of phantoms for patient matching and lookup of refined values of organ dose coefficients and/or radionuclide S values. We close with two brief examples of the use of hybrid phantoms in medical dose reconstruction—diagnostic nuclear medicine for pediatric subjects and interventional fluoroscopy for adult patients.


Journal of Magnetic Resonance Imaging | 2011

Evaluation of respiratory liver and kidney movements for MRI navigator gating

Ruitian Song; Aaryani Tipirneni; Perry Johnson; Ralf B. Loeffler; Claudia M. Hillenbrand

To determine the tracking factor by studying the relationship between kidney and diaphragm motions and to compare the efficiency of the gating‐and‐following and gating‐only algorithms in reducing motion artifacts in navigator‐gated scans.


Journal of Applied Clinical Medical Physics | 2016

Benchmarking of five commercial deformable image registration algorithms for head and neck patients

Jason Pukala; Perry Johnson; Amish P. Shah; K Langen; Frank J. Bova; R Staton; R. Manon; P. Kelly; Sanford L. Meeks

Benchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground‐truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground‐truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground‐truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phantoms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach. PACS number(s): 87.57.nj, 87.55.dk, 87.55.QrBenchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground-truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground-truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground-truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phantoms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach. PACS number(s): 87.57.nj, 87.55.dk, 87.55.Qr.


Proceedings of the IEEE | 2009

Hybrid Patient-Dependent Phantoms Covering Statistical Distributions of Body Morphometry in the U.S. Adult and Pediatric Population

Perry Johnson; Scott R. Whalen; Michael Wayson; B Juneja; Choonsik Lee; Wesley E. Bolch

Hybrid computational phantoms offer unique advantages for the construction of diverse anthropomorphic models. In this paper, a methodology is presented for the construction of patient-dependent phantoms built around anthropometric distributions of the U.S. adult and pediatric populations. The methodology relies on the flexibility of hybrid phantoms to match target anthropometric parameters as determined from National Center for Health Statistics databases. Target parameters as defined in this paper include the primary parameters such as standing height, sitting height, and total body mass; and secondary parameters such as waist, buttocks, arm, and thigh circumference. As a demonstration of this methodology, the UF hybrid adult male (UFHADM) and UF hybrid 10-year-old female (UFH10F) were selected as representative anchor phantoms for this study and were subsequently remodeled to create 25 different adult male and 15 different pediatric female patient-dependent phantoms. The phantoms were evaluated based on appearance and internal organ masses. Aesthetically, the phantoms appear correct and display characteristics of a diverse population including variability in body shape and standing/sitting height. Organ masses display several general trends, including a gradual increase with both standing height and subject weight. Selected organ masses from the UFHADM series were also compared with published correlations taken from a 2001 French-based autopsy study. The organ masses were located well within the statistical deviation presented in the autopsy study and followed similar trends when correlated with both standing height and body mass index.


Medical Physics | 2011

The impact of anthropometric patient-phantom matching on organ dose: a hybrid phantom study for fluoroscopy guided interventions.

Perry Johnson; Amy M. Geyer; David Borrego; Kayla R. Ficarrotta; Kevin Johnson; Wesley E. Bolch

PURPOSE To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. METHODS In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. RESULTS Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. CONCLUSIONS The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.


Journal of Applied Clinical Medical Physics | 2016

Evaluation of the tool “Reg Refine” for user-guided deformable image registration

Perry Johnson; Kyle R. Padgett; Kuan L. Chen; Nesrin Dogan

“Reg Refine” is a tool available in the MIM Maestro v6.4.5 platform (www.mimsoftware.com) that allows the user to actively participate in the deformable image registration process. The purpose of this work was to evaluate the efficacy of this tool and investigate strategies for how to apply it effectively. This was done by performing DIR on two publicly available ground‐truth models, the Pixel‐based Breathing Thorax Model (POPI) for lung, and the Deformable Image Registration Evaluation Project (DIREP) for head and neck. Image noise matched in both magnitude and texture to clinical CBCT scans was also added to each model to simulate the use case of CBCT–CT alignment. For lung, the results showed Reg Refine effective at improving registration accuracy when controlled by an expert user within the context of large lung deformation. CBCT noise was also shown to have no effect on DIR performance while using the MIM algorithm for this site. For head and neck, the results showed CBCT noise to have a large effect on the accuracy of registration, specifically for low‐contrast structures such as the brainstem and parotid glands. In these cases, the Reg Refine tool was able to improve the registration accuracy when controlled by an expert user. Several strategies for how to achieve these results have been outlined to assist other users and provide feedback for developers of similar tools. PACS number(s): 87.44.Qr, 87.57.nj, 87.57.c

Collaboration


Dive into the Perry Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choonsik Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F Yang

University of Miami

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B Juneja

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge