Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Persephone Borrow is active.

Publication


Featured researches published by Persephone Borrow.


Science | 1996

Induction of bystander T cell proliferation by viruses and type I interferon in vivo

David F. Tough; Persephone Borrow; Jonathan Sprent

T cell proliferation in vivo is presumed to reflect a T cell receptor (TCR)-mediated polyclonal response directed to various environmental antigens. However, the massive proliferation of T cells seen in viral infections is suggestive of a bystander reaction driven by cytokines instead of the TCR. In mice, T cell proliferation in viral infections preferentially affected the CD44hi subset of CD8+ cells and was mimicked by injection of polyinosinic-polycytidylic acid [poly(I:C)], an inducer of type I interferon (IFN I), and also by purified IFN I; such proliferation was not associated with up-regulation of CD69 or CD25 expression, which implies that TCR signaling was not involved. IFN I [poly(I:C)]-stimulated CD8+ cells survived for prolonged periods in vivo and displayed the same phenotype as did long-lived antigen-specific CD8+ cells. IFN I also potentiated the clonal expansion and survival of CD8+ cells responding to specific antigen. Production of IFN I may thus play an important role in the generation and maintenance of specific memory.


Nature Immunology | 2003

Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon.

Le Bon A; Etchart N; Rossmann C; Miranda Ashton; Sam Hou; Gewert D; Persephone Borrow; David F. Tough

CD8+ T cell responses can be generated against antigens that are not expressed directly within antigen-presenting cells (APCs), through a process known as cross-priming. To initiate cross-priming, APCs must both capture extracellular antigen and receive specific activation signals. We have investigated the nature of APC activation signals associated with virus infection that stimulate cross-priming. We show that infection with lymphocytic choriomeningitis virus induces cross-priming by a mechanism dependent on type I interferon (IFN-α/β). Activation of cross-priming by IFN-α/β was independent of CD4+ T cell help or interaction of CD40 and CD40 ligand, and involved direct stimulation of dendritic cells. These data identify expression of IFN-α/β as a mechanism for the induction of cross-priming during virus infections.


Nature Reviews Immunology | 2010

The immune response during acute HIV-1 infection: clues for vaccine development

Andrew J. McMichael; Persephone Borrow; Georgia D. Tomaras; Nilu Goonetilleke; Barton F. Haynes

The early immune response to HIV-1 infection is likely to be an important factor in determining the clinical course of disease. Recent data indicate that the HIV-1 quasispecies that arise following a mucosal infection are usually derived from a single transmitted virus. Moreover, the finding that the first effective immune responses drive the selection of virus escape mutations provides insight into the earliest immune responses against the transmitted virus and their contributions to the control of acute viraemia. Strong innate and adaptive immune responses occur subsequently but they are too late to eliminate the infection. In this Review, we discuss recent studies on the kinetics and quality of early immune responses to HIV-1 and their implications for developing a successful preventive HIV-1 vaccine.


Nature | 2003

Viral infection switches non-plasmacytoid dendritic cells into high interferon producers

Sandra S. Diebold; Maria Montoya; Hermann Unger; Lena Alexopoulou; Polly Roy; Linsey E. Haswell; Aymen Al-Shamkhani; Richard A. Flavell; Persephone Borrow; Caetano Reis e Sousa

Type I interferons (IFN-I) are important cytokines linking innate and adaptive immunity. Plasmacytoid dendritic cells make high levels of IFN-I in response to viral infection and are thought to be the major source of the cytokines in vivo. Here, we show that conventional non-plasmacytoid dendritic cells taken from mice infected with a dendritic-cell-tropic strain of lymphocytic choriomeningitis virus make similarly high levels of IFN-I on subsequent culture. Similarly, non-plasmacytoid dendritic cells secrete high levels of IFN-I in response to double-stranded RNA (dsRNA), a major viral signature, when the latter is introduced into the cytoplasm to mimic direct viral infection. This response is partially dependent on the cytosolic dsRNA-binding enzyme protein kinase R and does not require signalling through toll-like receptor (TLR) 3, a surface receptor for dsRNA. Furthermore, we show that sequestration of dsRNA by viral NS1 (refs 6, 7) explains the inability of conventional dendritic cells to produce IFN-I on infection with influenza. Our results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for dendritic cell activation that can be the target of viral interference.


Journal of Experimental Medicine | 2009

The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection

Nilu Goonetilleke; Michael K. P. Liu; Jesus F. Salazar-Gonzalez; Guido Ferrari; Elena E. Giorgi; Vitaly V. Ganusov; Brandon F. Keele; Gerald H. Learn; Emma L. Turnbull; Maria G. Salazar; Kent J. Weinhold; Stephen Moore; Norman L. Letvin; Barton F. Haynes; Myron S. Cohen; Peter Hraber; Tanmoy Bhattacharya; Persephone Borrow; Alan S. Perelson; Beatrice H. Hahn; George M. Shaw; Bette T. Korber; Andrew J. McMichael

Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.


Journal of Virology | 2009

Induction of a Striking Systemic Cytokine Cascade prior to Peak Viremia in Acute Human Immunodeficiency Virus Type 1 Infection, in Contrast to More Modest and Delayed Responses in Acute Hepatitis B and C Virus Infections

Andrea R. Stacey; Philip J. Norris; Li Qin; Elizabeth Haygreen; Elizabeth Taylor; John W. Heitman; Mila Lebedeva; Allan C. deCamp; Dongfeng Li; Douglas Grove; Steven G. Self; Persephone Borrow

ABSTRACT Characterization of the immune responses induced in the initial stages of human immunodeficiency virus type 1 (HIV-1) infection is of critical importance for an understanding of early viral pathogenesis and prophylactic vaccine design. Here, we used sequential plasma samples collected during the eclipse and exponential viral expansion phases from subjects acquiring HIV-1 (or, for comparison, hepatitis B virus [HBV]or hepatitis C virus [HCV]) to determine the nature and kinetics of the earliest systemic elevations in cytokine and chemokine levels in each infection. Plasma viremia was quantitated over time, and levels of 30 cytokines and chemokines were measured using Luminex-based multiplex assays and enzyme-linked immunosorbent assays. The increase in plasma viremia in acute HIV-1 infection was found to be associated with elevations in plasma levels of multiple cytokines and chemokines, including rapid and transient elevations in alpha interferon (IFN-α) and interleukin-15 (IL-15) levels; a large increase in inducible protein 10 (IP-10) levels; rapid and more-sustained increases in tumor necrosis factor alpha and monocyte chemotactic protein 1 levels; more slowly initiated elevations in levels of additional proinflammatory factors including IL-6, IL-8, IL-18, and IFN-γ; and a late-peaking increase in levels of the immunoregulatory cytokine IL-10. Notably, there was comparatively little perturbation in plasma cytokine levels during the same phase of HBV infection and a delayed response of more intermediate magnitude in acute HCV infection, indicating that the rapid activation of a striking systemic cytokine cascade is not a prerequisite for viral clearance (which occurs in a majority of HBV-infected individuals). The intense early cytokine storm in acute HIV-1 infection may have immunopathological consequences, promoting immune activation, viral replication, and CD4+ T-cell loss.


Nature Immunology | 2005

Initial T cell frequency dictates memory CD8+ T cell lineage commitment.

Amanda L. Marzo; Kimberly D. Klonowski; Agnes Le Bon; Persephone Borrow; David F. Tough; Leo Lefrançois

Memory T cells can be divided into central memory T cell (TCM cell) and effector memory T cell (TEM cell) subsets based on homing characteristics and effector functions. Whether TEM and TCM cells represent interconnected or distinct lineages is unclear, although the present paradigm suggests that TEM and TCM cells follow a linear differentiation pathway from naive T cells to effector T cells to TEM cells to TCM cells. We show here that naive T cell precursor frequency profoundly influenced the pathway along which CD8+ memory T cells developed. At low precursor frequency, those TEM cells generated represented a stable cell lineage that failed to further differentiate into TCM cells. These findings do not adhere to the present dogma regarding memory T cell generation and provide a means for identifying factors controlling memory T cell lineage commitment.


Journal of Experimental Medicine | 2007

Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage

Claire Dunn; R. Maurizia Brunetto; Gary M. Reynolds; Theodoros Christophides; P. Kennedy; P. Lampertico; Abhishek Das; A. Ross Lopes; Persephone Borrow; Kevin J Williams; E Humphreys; Simon C. Afford; David H. Adams; Antonio Bertoletti; Mala K. Maini

Hepatitis B virus (HBV) causes chronic infection in more than 350 million people worldwide. It replicates in hepatocytes but is non-cytopathic; liver damage is thought to be immune mediated. Here, we investigated the role of innate immune responses in mediating liver damage in patients with chronic HBV infection. Longitudinal analysis revealed a temporal correlation between flares of liver inflammation and fluctuations in interleukin (IL)-8, interferon (IFN)-α, and natural killer (NK) cell expression of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) directly ex vivo. A cross-sectional study confirmed these findings in patients with HBV-related liver inflammation compared with healthy carriers. Activated, TRAIL-expressing NK cells were further enriched in the liver of patients with chronic HBV infection, while their hepatocytes expressed increased levels of a TRAIL death–inducing receptor. IFN-α concentrations found in patients were capable of activating NK cells to induce TRAIL-mediated hepatocyte apoptosis in vitro. The pathogenic potential of this pathway could be further enhanced by the ability of the IFN-α/IL-8 combination to dysregulate the balance of death-inducing and regulatory TRAIL receptors expressed on hepatocytes. We conclude that NK cells may contribute to liver inflammation by TRAIL-mediated death of hepatocytes and demonstrate that this non-antigen–specific mechanism can be switched on by cytokines produced during active HBV infection.


Nature Immunology | 2001

SAP controls T cell responses to virus and terminal differentiation of TH2 cells.

Chengbin Wu; Khuong B. Nguyen; Gary C. Pien; Ninghai Wang; Charles Gullo; Duncan Howie; Miriam Rodriguez Sosa; Matthew J. Edwards; Persephone Borrow; Abhay R. Satoskar; Arlene H. Sharpe; Christine A. Biron; Cox Terhorst

SH2D1A, which encodes signaling lymphocyte activation molecule (SLAM)–associated protein (SAP), is altered in patients with X-linked lymphoproliferative disease (XLP), a primary immunodeficiency. SAP-deficient mice infected with lymphocytic choriomeningitis virus had greatly increased numbers of CD8+ and CD4+ interferon-γ–producing spleen and liver cells compared to wild-type mice. The immune responses of SAP-deficient mice to infection with Leishmania major together with in vitro studies showed that activated SAP-deficient T cells had an impaired ability to differentiate into T helper 2 cells. The aberrant immune responses in SAP-deficient mice show that SAP controls several distinct key T cell signal transduction pathways, which explains in part the complexity of the XLP phenotypes.


PLOS ONE | 2010

Transmission of Single HIV-1 Genomes and Dynamics of Early Immune Escape Revealed by Ultra-Deep Sequencing

Will Fischer; Vitaly V. Ganusov; Elena E. Giorgi; Peter Hraber; Brandon F. Keele; Thomas Leitner; Cliff Han; Cheryl D. Gleasner; Lance D. Green; Chien-Chi Lo; Ambarish Nag; Timothy C. Wallstrom; Shuyi Wang; Andrew J. McMichael; Barton F. Haynes; Beatrice H. Hahn; Alan S. Perelson; Persephone Borrow; George M. Shaw; Tanmoy Bhattacharya; Bette T. Korber

We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3–6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses – using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2–7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.

Collaboration


Dive into the Persephone Borrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Williams

University College London

View shared research outputs
Top Co-Authors

Avatar

George M. Shaw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Myron S. Cohen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nilu Goonetilleke

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge