Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. van Rijen is active.

Publication


Featured researches published by Peter C. van Rijen.


PLOS ONE | 2012

MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response.

Anand M. Iyer; Emanuele Zurolo; Avanita S. Prabowo; Kees Fluiter; Wim G. M. Spliet; Peter C. van Rijen; Jan A. Gorter; Eleonora Aronica

Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1β signaling. Downstream signaling in the IL-1β pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1β and blocked by IL-1β receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1β stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation and suggests that this miR may represent a novel target for therapeutic strategies.


Epilepsy Research | 2001

Glioneuronal tumors and medically intractable epilepsy: a clinical study with long-term follow-up of seizure outcome after surgery

Eleonora Aronica; Sieger Leenstra; Cees W. M. Van Veelen; Peter C. van Rijen; Theo J. M. Hulsebos; Anne C. Tersmette; Bulent Yankaya; Dirk Troost

The present study intends to identify factors that predict postoperative clinical outcome in patients with gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNT). We evaluated the medical records of 45 patients with GG and 13 patients with DNT, treated surgically between 1985 and 1995. We assessed several clinical and histopathological features and analyzed the data statistically. At 5 years postoperatively, 63% of patients with GG and 58% of patients with DNT were seizure-free (Engels class I). Younger age at surgery (P<0.01 for GG and P<0.05 for DNT), total resection (P<0.01 for GG), shorter duration of epilepsy (P<0.01), absence of generalized seizures (P<0.01 for GG; P<0.05 for DNT) and absence of epileptiform discharge in the post-operative EEG (P<0.01 for GG; P=0.01 for DNT) predicted a better postoperative seizure outcome. Tumor recurrence with malignant progression occurred in eight histologically benign GG and two anaplastic GG and was associated which older age at surgery (P=0.01) and subtotal resection of the tumor (P<0.01). Our results indicate that a prompt diagnosis, relatively soon after seizure onset, followed by complete resection of glioneuronal tumors provides the best chance for curing epilepsy and preventing their malignant transformation.


Brain | 2011

Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development

Emanuele Zurolo; Anand M. Iyer; Mattia Maroso; Caterina Carbonell; Jasper J. Anink; Teresa Ravizza; Kees Fluiter; Wim G. M. Spliet; Peter C. van Rijen; Annamaria Vezzani; Eleonora Aronica

Recent evidence in experimental models of seizures and in temporal lobe epilepsy support an important role of high-mobility group box 1 and toll-like receptor 4 signalling in the mechanisms of hyperexcitability leading to the development and perpetuation of seizures. In this study, we investigated the expression and cellular distribution of toll-like receptors 2 and 4, and of the receptor for advanced glycation end products, and their endogenous ligand high-mobility group box 1, in epilepsy associated with focal malformations of cortical development. Immunohistochemistry showed increased expression of toll-like receptors 2 and 4 and receptor for advanced glycation end products in reactive glial cells in focal cortical dysplasia, cortical tubers from patients with the tuberous sclerosis complex and in gangliogliomas. Toll-like receptor 2 was predominantly detected in cells of the microglia/macrophage lineage and in balloon cells in focal cortical dysplasia, and giant cells in tuberous sclerosis complex. The toll-like receptor 4 and receptor for advanced glycation end products were expressed in astrocytes, as well as in dysplastic neurons. Real-time quantitative polymerase chain reaction confirmed the increased receptors messenger RNA level in all pathological series. These receptors were not detected in control cortex specimens. In control cortex, high-mobility group box 1 was ubiquitously detected in nuclei of glial and neuronal cells. In pathological specimens, protein staining was instead detected in the cytoplasm of reactive astrocytes or in tumour astrocytes, as well as in activated microglia, predictive of its release from glial cells. In vitro experiments in human astrocyte cultures showed that nuclear to cytoplasmic translocation of high-mobility group box 1 was induced by interleukin-1β. Our findings provide novel evidence of intrinsic activation of these pro-inflammatory signalling pathways in focal malformations of cortical development, which could contribute to the high epileptogenicity of these developmental lesions.


Epilepsia | 2003

Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in Taylor-type focal cortical dysplasia

Eleonora Aronica; Jan A. Gorter; Gerard H. Jansen; Cees W. M. Van Veelen; Peter C. van Rijen; Marja Ramkema; Dirk Troost

Summary:  Purpose: Focal cortical dysplasia (FCD) is known to be a major cause of intractable epilepsy. The cellular mechanism(s) underlying the epileptogenicity of FCD remain largely unknown. Because recent studies indicate that metabotropic glutamate receptor subtypes (mGluRs) play a role in epileptogenesis, we investigated the expression and cellular distribution pattern of mGluRs in FCD specimens.


Epilepsia | 2010

Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias

Anand M. Iyer; Emanuele Zurolo; Wim G. M. Spliet; Peter C. van Rijen; Johannes C. Baayen; Jan A. Gorter; Eleonora Aronica

Purpose:  Induction of inflammatory pathways has been reported in epileptic patients with focal malformations of cortical development. In the present study we examined the innate and adaptive immune responses in focal cortical dysplasia (FCD) with different histopathologic and pathogenetic features.


Cellular and Molecular Life Sciences | 2012

Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response

Anne A. Kan; Susan van Erp; Alwin A.H.A. Derijck; Marina de Wit; Ellen V. S. Hessel; Eoghan O’Duibhir; Wilco de Jager; Peter C. van Rijen; Peter H. Gosselaar; Pierre N. E. De Graan; R. Jeroen Pasterkamp

Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level. Here, we performed a genome-wide miRNA profiling study to examine whether miRNA-mediated mechanisms are affected in human mTLE. miRNA profiles of the hippocampus of autopsy control patients and two mTLE patient groups were compared. This revealed segregated miRNA signatures for the three different patient groups and 165 miRNAs with up- or down-regulated expression in mTLE. miRNA in situ hybridization detected cell type-specific changes in miRNA expression and an abnormal nuclear localization of select miRNAs in neurons and glial cells of mTLE patients. Of several cellular processes implicated in mTLE, the immune response was most prominently targeted by deregulated miRNAs. Enhanced expression of inflammatory mediators was paralleled by a reduction in miRNAs that were found to target the 3′-untranslated regions of these genes in reporter assays. miR-221 and miR-222 were shown to regulate endogenous ICAM1 expression and were selectively co-expressed with ICAM1 in astrocytes in mTLE patients. Our findings suggest that miRNA changes in mTLE affect the expression of immunomodulatory proteins thereby further facilitating the immune response. This mechanism may have broad implications given the central role of astrocytes and the immune system in human neurological disease. Overall, this work extends the current concepts of human mTLE pathogenesis to the level of miRNA-mediated gene regulation.


Epilepsia | 2006

Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia.

Cyrille H. Ferrier; E. Aronica; Frans S. S. Leijten; Wim G. M. Spliet; Alexander C. van Huffelen; Peter C. van Rijen; C.D. Binnie

Summary:  Purpose: To determine whether highly epileptiform electrocorticographical discharge patterns occur in patients with glioneuronal tumors (GNTs) and focal cortical dysplasia (FCD) and whether specific histopathological features are related to such patterns.


Brain Pathology | 2009

Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

Karin Boer; Peter B. Crino; Jan A. Gorter; Mark Nellist; Floor E. Jansen; Wim G. M. Spliet; Peter C. van Rijen; Floyd Wittink; Timo M. Breit; Dirk Troost; Wytse J. Wadman; Eleonora Aronica

Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures, remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome‐wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion, for example, VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission, for example, the glial glutamate transporter GLT‐1, and voltage‐gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development.


Epilepsia | 2005

Health‐related Quality of Life and Self‐perceived Competence of Children Assessed before and up to Two Years after Epilepsy Surgery

Ron Van Empelen; Aag Jennekens-Schinkel; Peter C. van Rijen; Paul J M Helders; Onno van Nieuwenhuizen

Summary:  Purpose: To measure outcome of epilepsy surgery in terms of health‐related quality of life (HrQoL) and self‐perceived competence of children and adolescents.


The Journal of Neuroscience | 2004

Material-Specific Recognition Memory Deficits Elicited by Unilateral Hippocampal Electrical Stimulation

Steven G. Coleshill; C.D. Binnie; Robin G. Morris; Gonzalo Alarcon; Walter van Emde Boas; D.N. Velis; Andrew Simmons; Charles E. Polkey; Cornelis W. M. van Veelen; Peter C. van Rijen

Although the medial temporal lobe is thought to be critical for recognition memory (RM), the specific role of the hippocampus in RM remains uncertain. We investigated the effects of transient unilateral hippocampal electrical stimulation (ES), subthreshold for afterdischarge, on delayed item RM in epilepsy patients implanted with bilateral hippocampal depth electrodes. RM was assessed using a novel computer-controlled test paradigm in which ES to left or right hippocampus was either absent (baseline) or synchronized with item presentation. Subsequent yes-no RM performance revealed a double dissociation between material-specific RM and the lateralization of ES. Left hippocampal ES produced word RM deficits, whereas right hippocampal ES produced face RM deficits. Our findings provide the first demonstration in humans that selective unilateral stimulation-induced hippocampal disruption is sufficient to produce impairments on delayed RM tasks and provide support for the material-specific laterality of hippocampal function with respect to RM.

Collaboration


Dive into the Peter C. van Rijen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge