Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim G. M. Spliet is active.

Publication


Featured researches published by Wim G. M. Spliet.


Neurobiology of Disease | 2006

The IL-1β system in epilepsy-associated malformations of cortical development

Teresa Ravizza; Karin Boer; Sandra Redeker; Wim G. M. Spliet; P.C. van Rijen; Dirk Troost; Annamaria Vezzani; Eleonora Aronica

Focal cortical dysplasia (FCD) and glioneuronal tumors (GNT) are recognized causes of chronic intractable epilepsy. The cellular mechanism(s) underlying their epileptogenicity remain largely unknown. Compelling evidence in experimental models of seizures indicates an important role of interleukin (IL)-1beta in the mechanisms of hyperexcitability leading to the occurrence of seizures. We immunocytochemically investigated the brain expression and cellular distribution pattern of IL-1beta, IL-1 receptor (IL-1R) types I and II and IL-1R antagonist (IL-1Ra) in FCD and GNT specimens, and we correlate these parameters with the clinical history of epilepsy in patients with medically intractable seizures. In normal control cortex, and in perilesional regions with histologically normal cortex, IL-1beta, IL-1Rs and IL-1Ra expression was undetectable. In all FCD and GNT specimens, IL-1beta and its signalling receptor IL-1RI were highly expressed by more than 30% of neurons and glia whereas the decoy receptor IL-RII and IL-Ra were expressed to a lesser extent by approximately 10% and 20% of cells, respectively. These findings show a high expression of IL-1beta and its functional receptor (IL-1RI) in FCD and GNT specimens together with a relative paucity of mechanisms (IL-1RII and IL-1Ra) apt to inactivate IL-1beta actions. Moreover, the number of IL-1beta- and IL-1RI-positive neurons was positively correlated with the frequency of seizures, whereas the number of IL-1Ra-positive neurons and astroglial cells was negatively correlated with the duration of epilepsy prior to surgery. The expression of IL-1beta family members in these developmental lesions may contribute to their intrinsic and high epileptogenicity, thus possibly representing a novel target for antiepileptic strategies.


PLOS ONE | 2012

MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response.

Anand M. Iyer; Emanuele Zurolo; Avanita S. Prabowo; Kees Fluiter; Wim G. M. Spliet; Peter C. van Rijen; Jan A. Gorter; Eleonora Aronica

Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1β signaling. Downstream signaling in the IL-1β pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1β and blocked by IL-1β receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1β stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation and suggests that this miR may represent a novel target for therapeutic strategies.


Epilepsia | 2005

Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain

Eleonora Aronica; Jan A. Gorter; Sandra Redeker; Erwin A. van Vliet; Marja Ramkema; George L. Scheffer; Rik J. Scheper; Paul van der Valk; Sieger Leenstra; Johannes C. Baayen; Wim G. M. Spliet; Dirk Troost

Summary:  Purpose: Breast cancer resistance protein (BCRP) is a half adenosine triphosphate (ATP)‐binding cassette (ABC) transporter expressed on cellular membranes and included in the group of multidrug resistant (MDR)‐related proteins. Recently, upregulation of different MDR proteins has been shown in human epilepsy‐associated conditions. This study investigated the expression and cellular distribution of BCRP in human control and epileptic brain, including a large number of both neoplastic and nonneoplastic specimens from patients with chronic pharmacoresistant epilepsy.


Epilepsy Research | 2008

Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex

Karin Boer; Floor E. Jansen; Mark Nellist; Sandra Redeker; A.M.W. van den Ouweland; Wim G. M. Spliet; O. van Nieuwenhuizen; Dirk Troost; Peter B. Crino; Eleonora Aronica

Cortical tubers and subependymal giant cell tumors (SGCT) are two major cerebral lesions associated with tuberous sclerosis complex (TSC). In the present study, we investigated immunocytochemically the inflammatory cell components and the induction of two major pro-inflammatory pathways (the interleukin (IL)-1beta and complement pathways) in tubers and SGCT resected from TSC patients. All lesions were characterized by the prominent presence of microglial cells expressing class II-antigens (HLA-DR) and, to a lesser extent, the presence of CD68-positive macrophages. We also observed perivascular and parenchymal T lymphocytes (CD3(+)) with a predominance of CD8(+) T-cytotoxic/suppressor lymphoid cells. Activated microglia and reactive astrocytes expressed IL-1beta and its signaling receptor IL-1RI, as well as components of the complement cascade, such as C1q, C3c and C3d. Albumin extravasation, with uptake in astrocytes, was observed in both tubers and SGCT, suggesting that alterations in blood brain barrier permeability are associated with inflammation in TSC-associated lesions. Our findings demonstrate a persistent and complex activation of inflammatory pathways in cortical tubers and SGCT.


Brain | 2011

Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development

Emanuele Zurolo; Anand M. Iyer; Mattia Maroso; Caterina Carbonell; Jasper J. Anink; Teresa Ravizza; Kees Fluiter; Wim G. M. Spliet; Peter C. van Rijen; Annamaria Vezzani; Eleonora Aronica

Recent evidence in experimental models of seizures and in temporal lobe epilepsy support an important role of high-mobility group box 1 and toll-like receptor 4 signalling in the mechanisms of hyperexcitability leading to the development and perpetuation of seizures. In this study, we investigated the expression and cellular distribution of toll-like receptors 2 and 4, and of the receptor for advanced glycation end products, and their endogenous ligand high-mobility group box 1, in epilepsy associated with focal malformations of cortical development. Immunohistochemistry showed increased expression of toll-like receptors 2 and 4 and receptor for advanced glycation end products in reactive glial cells in focal cortical dysplasia, cortical tubers from patients with the tuberous sclerosis complex and in gangliogliomas. Toll-like receptor 2 was predominantly detected in cells of the microglia/macrophage lineage and in balloon cells in focal cortical dysplasia, and giant cells in tuberous sclerosis complex. The toll-like receptor 4 and receptor for advanced glycation end products were expressed in astrocytes, as well as in dysplastic neurons. Real-time quantitative polymerase chain reaction confirmed the increased receptors messenger RNA level in all pathological series. These receptors were not detected in control cortex specimens. In control cortex, high-mobility group box 1 was ubiquitously detected in nuclei of glial and neuronal cells. In pathological specimens, protein staining was instead detected in the cytoplasm of reactive astrocytes or in tumour astrocytes, as well as in activated microglia, predictive of its release from glial cells. In vitro experiments in human astrocyte cultures showed that nuclear to cytoplasmic translocation of high-mobility group box 1 was induced by interleukin-1β. Our findings provide novel evidence of intrinsic activation of these pro-inflammatory signalling pathways in focal malformations of cortical development, which could contribute to the high epileptogenicity of these developmental lesions.


Journal of Cerebral Blood Flow and Metabolism | 2013

In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI

Susanne J. van Veluw; Jaco J.M. Zwanenburg; JooYeon Engelen-Lee; Wim G. M. Spliet; Jeroen Hendrikse; Peter R. Luijten; Geert Jan Biessels

Cerebrovascular disease has an important role in cognitive decline and dementia. In this context, cerebral microinfarcts are attracting increasing attention, but these lesions could thus far not be detected in vivo. The aim of this study was to try to identify possible cortical microinfarcts on high-resolution 7T in vivo magnetic resonance imaging (MRI) and to perform a histopathologic validation study on similar appearing lesions on 7T ex vivo MRI of postmortem brain tissue. The study population consisted of 22 elderly subjects, who underwent 7T MRI. The fluid attenuated inversion recovery, T2, and T1 weighted scans of these subjects were examined for possible cortical microinfarcts. In the ex vivo MRI study, 15 formalin-fixed coronal brain slices of 6 subjects with Alzheimer and vascular pathology were examined and subjected to histopathologic verification. On the in vivo scans, 15 cortical lesions could be identified that were likely to be microinfarcts in 6 subjects. In the postmortem tissue, 6 similar appearing lesions were identified of which 5 were verified as cortical microinfarcts on histopathology. This study provides strong evidence that cortical microinfarcts can be detected in vivo, which will be of great value in further studies into the role of vascular disease in cognitive decline and dementia.


Neuroscience | 2011

TOLL-LIKE RECEPTOR SIGNALING IN AMYOTROPHIC LATERAL SCLEROSIS SPINAL CORD TISSUE

M. Casula; Anand M. Iyer; Wim G. M. Spliet; Jasper J. Anink; K. Steentjes; M. Sta; Dirk Troost; E. Aronica

Increasing evidence indicates that inflammatory responses could play a critical role in the pathogenesis of motor neuron injury in amyotrophic lateral sclerosis (ALS). Recent findings have underlined the role of Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE) in the regulation of both innate and adaptive immunity in different pathologies associated with neuroinflammation. In the present study we investigated the expression and cellular distribution of TLR2, TLR4, RAGE and their endogenous ligand high mobility group box 1 (HMGB1) in the spinal cord of control (n=6) and sporadic ALS (n=12) patients. The immunohistochemical analysis of TLR2, TLR4 and RAGE showed increased expression in reactive glial cells in both gray (ventral horn) and white matter of ALS spinal cord. TLR2 was predominantly detected in cells of the microglia/macrophage lineage, whereas the TLR4 and RAGE was strongly expressed in astrocytes. Real-time quantitative PCR analysis confirmed the increased expression of both TLR2 and TLR4 and HMGB1 mRNA level in ALS patients. In ALS spinal cord, HMGB1 signal is increased in the cytoplasm of reactive glia, indicating a possible release of this molecule from glial cells. Our findings show increased expression of TLR2, TLR4, RAGE and HMGB1 in reactive glia in human ALS spinal cord, suggesting activation of the TLR/RAGE signaling pathways. The activation of these pathways may contribute to the progression of inflammation, resulting in motor neuron injury. In this context, future studies, using animal models, will be important to achieve a better understanding of these signaling pathways in ALS in view of the development of new therapeutic strategies.


Epilepsia | 2010

Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias

Anand M. Iyer; Emanuele Zurolo; Wim G. M. Spliet; Peter C. van Rijen; Johannes C. Baayen; Jan A. Gorter; Eleonora Aronica

Purpose:  Induction of inflammatory pathways has been reported in epileptic patients with focal malformations of cortical development. In the present study we examined the innate and adaptive immune responses in focal cortical dysplasia (FCD) with different histopathologic and pathogenetic features.


Neuroscience | 2007

Differential expression patterns of chloride transporters, Na+-K+-2Cl−-cotransporter and K+-Cl−-cotransporter, in epilepsy-associated malformations of cortical development

Eleonora Aronica; Karin Boer; Sandra Redeker; Wim G. M. Spliet; P.C. van Rijen; Dirk Troost; Jan A. Gorter

Malformations of cortical development are recognized causes of chronic medically intractable epilepsy. An increasing number of observations suggests an important role for cation-chloride co-transporters (CCTs) in controlling neuronal function. Deregulation of their expression may contribute to the mechanisms of hyperexcitability that lead to seizures. In the present study the expression and cell-specific distribution of Na+-K+-2Cl--cotransporter (NKCC1) and K+-Cl--cotransporter (KCC2) were studied immunocytochemically in different developmental lesions, including focal cortical dysplasia (FCD) type IIB (n=9), hemimegalencephaly (HMEG, n=6) and ganglioglioma (GG, n=9) from patients with medically intractable epilepsy and in age-matched controls. In normal control adult cortex, NKCC1 displayed low neuronal and glial expression levels. In contrast KCC2 showed strong and diffuse neuropil staining. Notable glial immunoreactivity (IR) was not found for KCC2. NKCC1 was highly expressed in the majority of FCD, HMEG and GG specimens. NKCC1 IR was observed in neurons of different size, including large dysplastic neurons, in balloon cells (in FCD and HMEG cases) and in glial cells with astrocytic morphology. The immunoreactivity pattern of KCC2 in FCD, HMEG and GG specimens was characterized by less neuropil staining and more intrasomatic IR compared with control. KCC2 IR was observed in neurons of different size, including large dysplastic neurons, but not in balloon cells or in glial cells with astrocytic morphology. Double-labeling experiments confirmed the differential cellular distribution of the two CCTs and their expression in GABA(A) receptor (alpha1 subunit)-positive dysplastic neurons. The cellular distribution of CCTs, with high expression of NKCC1 in dysplastic neurons and altered subcellular distribution of KCC2 resembles that of immature cortex and suggests a possible contribution of CCTs to the high epileptogenicity of malformations of cortical development.


Journal of Neuroimmunology | 2006

Evidence of activated microglia in focal cortical dysplasia

Karin Boer; Wim G. M. Spliet; P.C. van Rijen; Sandra Redeker; Dirk Troost; E. Aronica

Focal cortical dysplasia (FCD), which is caused by malformations of cortical development, is known to be a major cause of intractable epilepsy. Cortical laminar disorganization and the presence of abnormal neuronal and astroglial cell types are histological characteristics of FCD. Though, little information is known about the microglia/macrophage cell system in FCD and its possible contribution to the high epileptogenesis of this disorder. In the present study, the distribution of cells of the microglia/macrophage lineage was studied in 20 specimens of FCD (type II) by immunocytochemistry for CD68 and human HLA-DR. A significant number of microglial cells and macrophages were observed within the dysplastic cortex. The mean number of CD68- and HLA-DR-positive cells was significantly higher in FCD specimens than in normal-appearing control cortex obtained at autopsy. HLA-DR-positive cells, which represent activated microglia, were localized around blood vessels and also clustered around dysplastic neuronal cells. The density of these activated HLA-DR-positive microglial cells correlated with the duration of epilepsy, as well as with the frequency of seizures prior to surgical resection. CD68-positive macrophages were mainly located around vessels and the number of these cells did not correlate with seizure frequency, neither with the duration of symptoms prior to surgical resection. In conclusion, our findings demonstrate a specific and persistent increase in the numerical density of HLA-DR-positive activated microglia within the dysplastic region, supporting the contribution of the inflammatory response and proinflammatory molecules to the epileptogenicity of FCD.

Collaboration


Dive into the Wim G. M. Spliet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Troost

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Boer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Aronica

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge