Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Danos is active.

Publication


Featured researches published by Peter Danos.


Psychiatry Research-neuroimaging | 1998

Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons

Peter Danos; Bruno Baumann; Hans‑Gert Bernstein; Michael G Franz; Renate Stauch; Georg Northoff; Dieter Krell; Peter Falkai; Bernhard Bogerts

This study was designed to examine possible anatomical changes of thalamocortical circuits in schizophrenics. Previous immunocytochemical studies have shown that parvalbumin, a calcium-binding protein, occurs in thalamocortical projection neurons, but not in GABAergic interneurons in the anteroventral thalamic nucleus (AN). Using parvalbumin-immunocytochemistry we investigated the densities of thalamocortical projection neurons in the AN of schizophrenic cases (n = 12) and controls (n = 14). The densities of all neurons in the AN were estimated by Nissl-staining. The majority of thalamocortical projection neurons in AN were identified by parvalbumin-immunoreaction. Significantly reduced densities of thalamocortical projection neurons were estimated in the right (P = 0.003) and left AN (P = 0.018) in schizophrenic subjects. The densities of all neurons in right and left AN were also diminished in schizophrenics; however, these decreases did not reach statistical significance. The reductions of parvalbumin-positive thalamocortical projection neurons were not correlated with the length of disease, this finding supporting the neurodevelopmental etiology of structural abnormalities in schizophrenia.


Schizophrenia Research | 2003

Volumes of association thalamic nuclei in schizophrenia: a postmortem study

Peter Danos; Bruno Baumann; Andrea Krämer; Hans-Gert Bernstein; Renate Stauch; Dieter Krell; Peter Falkai; Bernhard Bogerts

The major association thalamic nuclei, the mediodorsal nucleus (MD) and the medial pulvinar nucleus (PUM) are regarded as important parts of the circuits among association cortical regions. Association cortical regions of the frontal, parietal and temporal lobes have been repeatedly implicated in the neuropathology of schizophrenia. Thus, the aim of the present postmortem study was to investigate the volumes of association thalamic nuclei in this disease. The volumes of the whole thalamus (THAL), MD and PUM were measured in each hemisphere of brains of 12 patients with schizophrenia and 13 age-matched and gender-matched normal control subjects without neuropsychiatric disorders. Patients with schizophrenia exhibited significant volume reductions in both the MD and the PUM, the reductions being more pronounced in the PUM. The volume of the PUM in the left (-19.7%, P=0.02) and right (-22.1%, P=0.01) hemispheres was significantly reduced in the schizophrenia group. The volume of the MD was reduced in both hemispheres in the schizophrenia group. However, the volume reduction was only significant in the left hemisphere (-9.3%, P=0.03). Patients with schizophrenia also exhibited a decreased volume of the THAL in the left (-16.4%, P=0.003) and right (-15.2%, P=0.006) hemispheres. There were no significant correlations between thalamic volumes and duration of illness or age of the patients. In conclusion, the present data indicate volume reductions of association thalamic nuclei in schizophrenia. These anatomical findings are consistent with the view that schizophrenia may be associated with disturbances of association cortical networks. However, the findings of a substantial volume reduction of the THAL suggest that the volumes of additional thalamic nuclei may be also reduced in schizophrenia.


Human Brain Mapping | 2009

Differential Parametric Modulation of Self-Relatedness and Emotions in Different Brain Regions

Georg Northoff; Felix Schneider; Michael Rotte; Christian Matthiae; Claus Tempelmann; Christina Wiebking; Felix Bermpohl; Alexander Heinzel; Peter Danos; Hans-Jochen Heinze; Bernhard Bogerts; Martin Walter; Jaak Panksepp

Our sense of self is strongly colored by emotions although at the same time we are well able to distinguish affect and self. Using functional magnetic resonance imaging, we here tested for the differential effects of self‐relatedness and emotion dimensions (valence, intensity) on parametric modulation of neural activity during perception of emotional stimuli. We observed opposite parametric modulation of self‐relatedness and emotion dimensions in the dorsomedial prefrontal cortex and the ventral striatum/nucleus accumbens, whereas neural activity in subcortical regions (tectum, right amygdala, hypothalamus) was modulated by self‐relatedness and emotion dimensions in the same direction. In sum, our results demonstrate that self‐relatedness is closely linked to emotion dimensions of valence and intensity in many lower subcortical brain regions involved in basic emotional systems and, at the same time, distinct from them in higher cortical regions that mediate cognitive processes necessary for becoming aware of ones self, for example self‐consciousness. Hum Brain Mapp, 2009.


Journal of Neurocytology | 1999

Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain

Hans-Gert Bernstein; Bruno Baumann; Peter Danos; Silvia Diekmann; Bernhard Bogerts; Eckart D. Gundelfinger; Karl-Heinz Braunewell

Neural visinin-like proteins (VILIPs) are members of the neuronal subfamily of intracellular EF-hand calcium sensor proteins termed the NCS family, which are thought to play important roles in cellular signal transduction. While numerous studies suggest a wide but uneven distribution of these proteins in rat and chicken brain, their location in, and possible significance for, the human brain, remains to be established. We used specific polyclonal antisera to map the human brain for VILIP-1 and VILIP-3 immunoreactivities. VILIP-1 was detected in cortical pyramidal cells and interneurons, septal, subthalamic and hippocampal neurons (subfields CA1 and CA4 pyramidal cells and especially hilar interneurons) as well as in cerebellar Golgi, basket, granule, stellate and dentate nucleus neurons. Purkinje cells were free of immunoreaction. VILIP-3 was more restricted in its distribution. It was identified in cerebellar Purkinje cells and a subpopulation of granule neurons. Further, neurons belonging to different nuclei of the brain stem and multiple subcortical nerve cells stained for visinin-like protein 3. A weak immunoreaction appeared in cortical and hippocampal neurons. Intracellularly the immunoreactivity appeared in the perikarya, dendrites and some axons. Sometimes, immunostaining was found in the neuropil. Glia did not express visinin-like proteins. Our findings support, from a neuroanatomical viewpoint, the idea that these calcium sensor proteins may be of relevance for neuronal signalling in the human CNS.


European Archives of Psychiatry and Clinical Neuroscience | 2005

Volume deficits of subcortical nuclei in mood disorders A postmortem study.

Hendrik Bielau; Kurt Trübner; Dieter Krell; Marcus W. Agelink; Hans-Gert Bernstein; Renate Stauch; Christian Mawrin; Peter Danos; Lieselotte Gerhard; Bernhard Bogerts; Bruno Baumann

AbstractStructural changes in subcortical nuclei may underlie clinical symptoms of mood disorders. The goal was to determine whether macrostructural changes exist in brain areas assumed to be involved in regulation of mood and whether such changes differ between major depressive disorder and bipolar disorder. A case–control design was used to compare volumes of all major subcortical nuclei. Brains of patients with major depressive disorder (n = 9) or bipolar disorder (n = 11) or of individuals without a neuropsychiatric disorder (n = 22) were included. Exclusion criteria were a history of substance abuse or histological signs of neurodegenerative disorders.Volumes of the striato–pallidal nuclei, of the hypothalamus, thalamus, amygdala, hippocampus and basal limbic forebrain were determined in the right and left hemisphere by planimetry of 20 μm whole brain serial paraffin sections. Comparisons between patients with bipolar disorder, major depressive disorder and controls showed a significant (Λ = 0.35, F20,56 = 1.93, P = 0.028) overall difference in volumes of all investigated regions with strong effect sizes ( ƒ > 0.40) contributed by the hypothalamus, external pallidum, putamen and thalamus. As compared to controls, a strong effect size (ƒ > 0.40) was found in the bipolar group for smaller volumes of the hypothalamus, external pallidum, putamen and thalamus,whereas in patients with major depressive disorder a strong effect size was only found for a smaller volume of the external pallidum. In conclusion our data suggest that pathways presumably involved in mood regulation have structural pathology in affective disorders with more pronounced abnormalities in bipolar disorder.


Journal of Neurology, Neurosurgery, and Psychiatry | 1999

Decreased density of GABA-A receptors in the left sensorimotor cortex in akinetic catatonia: investigation of in vivo benzodiazepine receptor binding

Georg Northoff; Reiner Steinke; Christian Czcervenka; Reiner Krause; Sven Ulrich; Peter Danos; Dieter Kropf; HansJürgen Otto; Bernhard Bogerts

OBJECTIVES Catatonia is a psychomotor syndrome with concomittant akinesia and anxiety which both respond almost immediately to benzodiazepines such as lorazepam. The benzodiazepine receptor distribution was therefore investigated in akinetic catatonia with single photon emission tomography (SPECT) using iodine-123-iomazenil (123 I Iomazenil). METHODS Ten akinetic catatonic patients, 10 psychiatric controls (similar age, sex, medication, and underlying psychiatric diagnosis but without catatonic syndrome), and 20 healthy controls were investigated with SPECT 2 hours after injection of 123 I Iomazenil. To exclude potential effects of cerebral perfusion (r-CBF) r-CBF was additionally investigated with Tc-99mECD SPECT. RESULTS Catatonic patients showed significantly lower iomazenil binding and altered right-left relations in the left sensorimotor cortex compared with psychiatric (p<0.001) and healthy (p<0.001) controls. In addition, there was significantly lower r-CBF in the right lower prefrontal and parietal cortex in catatonia whereas in the left sensorimotor cortex no differences in r-CBF between groups were found. Catatonic motor and affective symptoms showed significant correlations (p<0.05) with benzodiazepine binding in the left sensorimotor cortex as well as with right parietal r-CBF. CONCLUSIONS Reduced iomazenil binding suggests decreased density of GABA-A receptors in the left sensorimotor cortex in akinetic catatonia. In addition to reduced GABA-A receptor density in the left sensorimotor cortex the parietal cortex seems to be involved in pathophysiology of catatonic symptoms. It is concluded that, considering results from correlation analyses, both emotional and motor symptoms in catatonia seem to be closely related to left sensorimotor and right parietal alterations.


Psychological Medicine | 2002

Circumscribed numerical deficit of dorsal raphe neurons in mood disorders.

Baumann B; Hendrik Bielau; Dieter Krell; Agelink Mw; Diekmann S; Wurthmann C; Trübner K; Bernstein Hg; Peter Danos; Bernhard Bogerts

BACKGROUND Neurocircuits comprising limbic, striato-pallidal and thalamo cortical brain areas are assumed to be involved in the pathophysiology of mood disorders. All these brain regions receive serotonergic afferents arising from the rostral raphe, mainly the dorsal raphe. Although serotonergic systems appear to be involved in the pathology of mood disorders, there is uncertainty as to whether structural alterations in raphe nuclei exist alongside a functional dysregulation of the serotonergic system. METHODS In the brains of 12 patients with mood disorders (major depressive disorder N= 6, bipolar disorder N = 6) and 12 normal subjects we performed a morphometric post-mortem study on neuronal morphology in all subnuclei of the dorsal raphe nucleus using Nissl stained 20 microm axial serial sections of the brainstem. RESULTS The number of neurones of the ventrolateral subnucleus of the dorsal raphe was reduced by 31 % in patients with mood disorders compared with non-psychiatric control subjects. Ventrally located subnuclei of the rostral dorsal raphe (ventrolateral, ventral, interfascicular) taken together also showed a smaller number of neurones. Neurone numbers of the dorsal and the caudal subnucleus and volumes of all single subnuclei appeared to be unchanged. Analysis of morphological neuronal types revealed a smaller number of triangular neurones in the ventrolateral subnucleus. Numbers of ovoid and round neurones in the ventrolateral subnucleus also showed a trend to reduction. No correlation was found between neurone numbers in any subnucleus of the dorsal raphe and duration of illness. Neurone numbers did not differ in any subnucleus between patients with unipolar and those with bipolar affective disorder. CONCLUSIONS Results indicate that patients with primary mood disorders have a circumscribed numerical neuronal deficiency in the dorsal raphe. This structural deviation may contribute to impaired serotonergic innervation of brain regions which are involved in the pathology of mood disorders.


Psychiatry Research-neuroimaging | 2005

Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study.

Peter Danos; Andrea Schmidt; Bruno Baumann; Hans‑Gert Bernstein; Georg Northoff; Renate Stauch; Dieter Krell; Bernhard Bogerts

Previous neuropathological studies on the mediodorsal thalamic nucleus (MD) in schizophrenia have yielded conflicting results. While some studies suggested that patients with schizophrenia have a pronounced reduction of the volume and neuron number in the MD, more recent data have not found anatomical alterations in this thalamic nucleus. However, most studies have considerable methodological shortcomings. In the present study, we investigated the volume, neuron density and neuron number in the left and right MD in patients with schizophrenia (n=20) and normal control subjects without neuropsychiatric disorders (n=18). Patients with schizophrenia showed no significant difference in neuron density and total neuron number in the MD. Compared with the control group, patients with schizophrenia had a smaller MD volume in both hemispheres, a difference that approached significance in the left MD (-7.3%) when the whole brain volume was included as a covariate. No significant main group effect of diagnosis was found for the right MD volume. There were no significant correlations between MD volume, neuron density, total neuron number and the duration of illness or the age of the patients. Taken together, the present results suggest that schizophrenia is associated with a moderate volume reduction in the left mediodorsal thalamic nucleus, while the neuron density and the total neuron number are unchanged.


Annals of the New York Academy of Sciences | 2007

Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology.

Hans-Gert Bernstein; Stephanie Krause; Dieter Krell; Henrik Dobrowolny; Marion Wolter; Renate Stauch; Karin Ranft; Peter Danos; Gustav F. Jirikowski; Bernhard Bogerts

Abstract:  The mammillary bodies (MB) are important relay nuclei within limbic and extralimbic connections. They are known to play important roles in memory formation and are affected in alcoholism and vitamin B1 deficiency. Their strategic position linking temporo‐limbic to cortico‐thalamic brain structures make the MB a candidate brain structure for alterations in schizophrenia. We studied 15 postmortem brains of schizophrenics and 15 matched control brains. Brain sections were stained either with Heidenhain‐Woelcke, glutamic acid decarboxylase (GAD), calretinin, or parvalbumin. We determined the volumes of the MB and performed cell countings using stereological principles and a computerized image analysis system. The volumes of MB do not differ between schizophrenics and controls. However, in schizophrenia the number of neurons as well as the resulting neuronal densities was significantly reduced on both sides (on left side by 38.9%, on right side by 22%). No changes were seen in the number of GAD‐expressing or calretinin‐containing neurons, whereas the number of parvalbumin‐immunoreactive MB neurons was reduced by more than 50% in schizophrenia. This cell loss (as a result of developmental malformation and/or neurodegeneration) points to a prominent involvement of the MB in the pathomorphology of schizophrenia. Parvalbumin‐immunoreactive GABAergic interneurons have been reported to be diminished in schizophrenia. However, in the MB parvalbumin labels a subpopulation of glutamate/aspartate‐containing neurons projecting mainly to the anterior thalamus. Thus, our data provide new evidence for impaired limbic circuits in schizophrenia.


Neuropsychobiology | 1998

Pathological Regional Cerebral Blood Flow in Opiate-Dependent Patients during Withdrawal: A HMPAO-SPECT Study

Peter Danos; Siegfried Kasper; Frank Grünwald; E. Klemm; C. Krappel; K. Broich; G. Höflich; B. Overbeck; Hans-Jürgen Biersack; Hans-Jürgen Möller

The aims of the present study were to investigate regional cerebral blood flow (rCBF) in heroin-dependent patients during withdrawal and to assess the relation between these changes and duration of heroin consumption and withdrawal data. The rCBF was measured using brain SPECT with 99mTc-HMPAO in 16 heroin-dependent patients during heroin withdrawal. Thirteen patients received levomethadone at the time of the SPECT scans. The images were analyzed both visually and quantitatively. A total of 21 hypoperfused brain regions were observed in 11 of the 16 patients. The temporal lobes were the most affected area, hypoperfusions of the right and left temporal lobe were observed in 5 and 5 patients, respectively. Three of the patients had a hypoperfusion of the right frontal lobe, 2 patients showed perfusion defects in the left frontal lobe, right parietal lobe and left parietal lobe. The results of the quantitative assessments of the rCBF were consistent with the results of the qualitative findings. The stepwise regression analysis showed a significant positive correlation (r = 0.54) between the dose of levomethadone at the time of the SPECT scan and the rCBF of the right parietal lobe. Other significant correlations between clinical data and rCBF were not found. The present results suggest brain perfusion abnormalities during heroin withdrawal in heroin-dependent patients, which are not due to the conditions of withdrawal.

Collaboration


Dive into the Peter Danos's collaboration.

Top Co-Authors

Avatar

Bernhard Bogerts

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Siegfried Kasper

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Bruno Baumann

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Hans-Gert Bernstein

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Dieter Krell

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renate Stauch

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge