Peter Faull
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Faull.
Nature Cell Biology | 2015
Nicolás Herranz; Suchira Gallage; Massimiliano Mellone; Torsten Wuestefeld; Sabrina Klotz; Christopher J. Hanley; Selina Raguz; Juan Carlos Acosta; Andrew J. Innes; Ana Banito; Athena Georgilis; Alex Montoya; Katharina Wolter; Gopuraja Dharmalingam; Peter Faull; Thomas Carroll; Juan Pedro Martinez-Barbera; Pedro R. Cutillas; Florian Reisinger; Mathias Heikenwalder; Richard A. Miller; Dominic J. Withers; Lars Zender; Gareth J. Thomas; Jesús Gil
Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.
Molecular & Cellular Proteomics | 2015
Maxime Rotival; Jeong-Hun Ko; Prashant K. Srivastava; Audrey Kerloc'h; Alex Montoya; Claudio Mauro; Peter Faull; Pedro R. Cutillas; Enrico Petretto; Jacques Behmoaras
Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages.
Developmental Cell | 2014
Nicola Silva; Nuria Ferrandiz; Consuelo Barroso; Silvia Tognetti; James Lightfoot; Oana Telecan; Vesela Encheva; Peter Faull; Simon Hanni; Andre Furger; Ambrosius P. Snijders; Christian Speck; Enrique Martinez-Perez
Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint.
Journal of Immunology | 2015
Jacques Behmoaras; Ana Garcia Diaz; Lara Venda; Jeong-Hun Ko; Prashant K. Srivastava; Alex Montoya; Peter Faull; Zoe Webster; Ben Moyon; Charles D. Pusey; David J. Abraham; Enrico Petretto; Terence Cook; Timothy J. Aitman
Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4−/− macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4−/− rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography–tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.
eLife | 2016
Saravanapriah Nadarajan; Firaz Mohideen; Yonatan B. Tzur; Nuria Ferrandiz; Oliver Crawley; Alex Montoya; Peter Faull; Ambrosius P. Snijders; Pedro R. Cutillas; Ashwini Jambhekar; Michael D. Blower; Enrique Martinez-Perez; J. Wade Harper; Monica P. Colaiácovo
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001
Nature Communications | 2018
Nuria Ferrandiz; Consuelo Barroso; Oana Telecan; Nan Shao; Hyun-Min Kim; Sarah Testori; Peter Faull; Pedro R. Cutillas; Ambrosious P. Snijders; Monica P. Colaiácovo; Enrique Martinez-Perez
The formation of haploid gametes from diploid germ cells requires the regulated two-step release of sister chromatid cohesion (SCC) during the meiotic divisions. Here, we show that phosphorylation of cohesin subunit REC-8 by Aurora B promotes SCC release at anaphase I onset in C. elegans oocytes. Aurora B loading to chromatin displaying Haspin-mediated H3 T3 phosphorylation induces spatially restricted REC-8 phosphorylation, preventing full SCC release during anaphase I. H3 T3 phosphorylation is locally antagonized by protein phosphatase 1, which is recruited to chromosomes by HTP-1/2 and LAB-1. Mutating the N terminus of HTP-1 causes ectopic H3 T3 phosphorylation, triggering precocious SCC release without impairing earlier HTP-1 roles in homolog pairing and recombination. CDK-1 exerts temporal regulation of Aurora B recruitment, coupling REC-8 phosphorylation to oocyte maturation. Our findings elucidate a complex regulatory network that uses chromosome axis components, H3 T3 phosphorylation, and cell cycle regulators to ensure accurate chromosome segregation during oogenesis.During meiosis, step-wise release of sister chromatid cohesion mediated by REC-8 cohesin is required for the formation of haploid gametes. Here, the authors show that in C. elegans oocytes, regulated recruitment of Aurora B kinase ensures the correct distribution of REC-8 phosphorylation, which promotes cohesion release.
The EMBO Journal | 2017
María Teresa Villoria; Facundo Ramos; Encarnación Dueñas; Peter Faull; Pedro R. Cutillas; Andrés Clemente-Blanco
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.
bioRxiv | 2018
Babita Madan; Nathan Harmston; Gahyathiri Nallan; Alex Montoya; Peter Faull; Enrico Petretto; David M. Virshup
Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a PORCN inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The analysis of temporal changes following Wnt withdrawal demonstrated direct and indirect regulation of >3,500 Wnt activated genes (23% of the transcriptome). Regulation was both transcriptional via Wnt/β-catenin, and through the modulation of protein abundance of important transcription factors including MYC via Wnt/STOP. Our study identifies a central role of Wnt /β-catenin and Wnt/STOP signaling in controlling ribosomal biogenesis, a key driver of cancer proliferation.
Nature Communications | 2018
Nuria Ferrandiz; Consuelo Barroso; Oana Telecan; Nan Shao; Hyun-Min Kim; Sarah Testori; Peter Faull; Pedro R. Cutillas; Ambrosius P. Snijders; Monica P. Colaiácovo; Enrique Martinez-Perez
The original version of this Article contained an error in the spelling of the author Ambrosius P. Snijders, which was incorrectly given as Ambrosious P. Snijders. This has now been corrected in both the PDF and HTML versions of the Article.
Journal of Clinical Investigation | 2018
Steven Millership; Gabriela da Silva Xavier; Agharul I. Choudhury; Sergio Bertazzo; Pauline Chabosseau; Silvia M.A. Pedroni; Elaine E. Irvine; Alex Montoya; Peter Faull; William R. Taylor; Julie Kerr-Conte; François Pattou; Jorge Ferrer; Mark Christian; Rosalind Margaret John; Mathieu Latreille; Ming Liu; Guy A. Rutter; James Scott; Dominic J. Withers
Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in &bgr; cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in &bgr; cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of &bgr; cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.