Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter H. Wiebe is active.

Publication


Featured researches published by Peter H. Wiebe.


Archive | 1978

Patterns and Processes in the Time-Space Scales of Plankton Distributions

Loren R. Haury; J. A. McGowan; Peter H. Wiebe

It is evident that organisms have aggregated, patchy distributions of abundance on a wide variety of space and time scales. This can easily be seen in the terrestrial and littoral environments. It has been more difficult to observe in the pelagic realm simply because we cannot see into the ocean. Thus we must depend upon sampling to gain an impression of the space-time scales of pattern in this habitat. Despite the difficulties, enough sampling of the right sort has now been done so that we can make some very general statements about the nature of pattern in the ocean, particularly with regard to pattern in the distribution and abundance of planktonic organisms. All the evidence indicates that plankton is patchy on a broad spectrum of scales. Because this aggregated spatial pattern is such a general phenomenon, there is little question of its ecological and evolutionary importance. Further, because we assume our samples represent a larger universe, patchiness strongly affects our efforts to obtain estimates of the abundance of organisms and our ability to detect significant spatial and temporal changes in abundance. It is therefore of great importance that we understand its nature, causes, and effects.


Marine Biology | 1985

New development in the MOCNESS, an apparatus for sampling zooplankton and micronekton

Peter H. Wiebe; A. W. Morton; A. M. Bradley; Richard H. Backus; James E. Craddock; V. Barber; Timothy J. Cowles; Glenn R. Flierl

Four variants of the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) have been constructed to sample a broad size spectrum of oceanic animals from microzooplankton to micronekton. The systems differ in mouth opening dimensions (ranging from 1/4 to 20 m2), the number of nets carried (from 5 to 20), and the mesh size of the netting (from 64 μm to 3.0 mm). A new electronics package enables an operator to send commands down a single conductor, armored cable to open/close the nets and provides 12-bit resolution for the environmental (temperature, depth, conductivity) and net operation data (flow, net-frame angle, net-bar release), which are transmitted up the cable to the deck unit at 2-s intervals. A microcomputer system, interfaced to the deck unit, calculates salinity, volume filtered by a net, net trajectory velocity, and vertical velocity. The data are printed out and stored on disc, and profiles of temperature and salinity versus depth are plotted during the course of the tow. Analysis of the relationship between the geometry of the MOCNESS under tow and the past and present methods used to estimate the water filtered by a net revealed that significant bias is introduced when the ascent or descent angle of a net is disregarded. The bias is a function of the ratio of vertical velocity to net trajectory velocity and results in an underestimate of volume filtered while shooting a net and an overestimate while hauling.


Science | 1980

Vertical Distribution and Isotopic Composition of Living Planktonic Foraminifera in the Western North Atlantic

Richard G. Fairbanks; Peter H. Wiebe; Allan W. H. Bé

Thirteen species of planktonic foraminifera collected with vertically stratified zooplankton tows in the slope water, Gulf Stream cold core ring, and northern Sargasso Sea show significant differences in their vertical distributions in the upper 200 meters of these different hydrographic regimes. Gulf Stream cold core rings may be responsible for a southern displacement of the faunal boundary associated with the Gulf Stream when reconstructed from the deep-sea sediment record. Oxygen isotope analyses of seven species reveal that nonspinose species (algal symbiont-barren) apparently calcify in oxygen isotope equilibrium, whereas spinose species usually calcify out of oxygen isotope equilibrium by approximately –0.3 to –0.4 per mil in δ18O values. The isotope data indicate that foraminifera shells calcify in depth zones that are significantly narrower than the overall vertical distribution of a species would imply.


Progress in Oceanography | 2003

From the Hensen net toward four-dimensional biological oceanography

Peter H. Wiebe; Mark C. Benfield

Abstract The development of quantitative zooplankton collecting systems began with Hensen, 1887 , Hensen, 1895 ). Non-opening closing nets, opening closing nets (mostly messenger based), high-speed samplers, and planktobenthos net systems all had their start in his era — the late 1800s and early 1900s. This was also an era in which many of the fundamental questions about the structure and dynamics of the plankton in the worlds oceans were first posed. Fewer new systems were introduced between 1912 and 1950 apparently due in part to the two World Wars. The continuous plankton recorder stands out as a truly innovative device developed during this period ( Hardy 1926b Nature, London 118, 630 ). Resurgence in development of mechanically-based instruments occurred during the 1950s and 1960s. A new lineage of high-speed samplers, the Gulf series, began in the 1950s and a number of variants were developed in the 1960s and 1970s. Net systems specifically designed to collect neuston first appeared in the late 1950s. During the 1960s, many focused field and experimental tank experiments were carried out to investigate the hydrodynamics of nets, and much of our knowledge concerning net design and construction criteria was developed. The advent of reliable electrical conducting cables and electrically-based control systems during this same period gave rise first to a variety of cod-end samplers and then to the precursors of the acoustically and electronically-controlled multi-net systems and environmental sensors, which appeared in the 1970s. The decade of the 1970s saw a succession of multi-net systems based both on the Be multiple plankton sampler and on the Tucker trawl. The advent of the micro-computer stimulated and enabled the development of sophisticated control and data logging electronics for these systems in the 1980s. In the 1990s, acoustic and optical technologies gave rise to sensor systems that either complement multiple net systems or are deployed without nets. Multi-sensor systems with high data telemetry rates through electro-optical cable are now being deployed in towed bodies and on remotely operated vehicles. In the offing are new molecular technologies to identify species in situ, and realtime data analysis, image processing, and 3D/4D display. In the near future, it is likely that the use of multi-sensor systems deployed on autonomous vehicles will yield world wide coverage of the distribution and abundance of zooplankton.


Marine Biology | 1979

Diel vertical migration bySalpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea

Peter H. Wiebe; Laurence P. Madin; L. R. Haury; G. R. Harbison; L. M. Philbin

In mid-summer 1975 throughout the Western Slope Water of the North Atlantic Ocean, massive numbers ofSalpa aspera performed a diel vertical migration of at least 800 m. This resulted in a movement of 85 to 90% of the total zooplankton biomass out of the upper 500 m during the day. Fecal pellet production and losses from this salp population were estimated to contribute approximately 12 mg C m-2 day-1 to the deep planktonic and benthic populations. If all this organic matter reached the deep-sea floor, it would represent over 100% of the daily deep-sea benthic infauna energy requirements.


Journal of the Acoustical Society of America | 1998

Sound scattering by several zooplankton groups. II. Scattering models

Timothy K. Stanton; Dezhang Chu; Peter H. Wiebe

Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups--fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225-235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.


Journal of the Acoustical Society of America | 1990

SOUND SCATTERING BY LIVE ZOOPLANKTON AND MICRONEKTON : EMPIRICAL STUDIES WITH A DUAL-BEAM ACOUSTICAL SYSTEM

Peter H. Wiebe; Charles H. Greene; Timothy K. Stanton; Janusz Burczynski

Measurements and analyses are presented of the backscattering of 420‐kHz sound by 43 individual animals of representative zooplanktonic and micronektonic taxa. Direct measurements of an individual’s target strength were made with a commercial dual‐beam sonar system in an enclosure filled with filtered seawater deployed off a dock at Friday Harbor, Washington. The dependence of target stengths upon individual length, wet weight, and dry weight was investigated. In addition, the ‘‘target strength’’ and statistical variations of echo amplitude due to variations in shape and orientation of the organism were compared with acoustic scattering models involving different shapes (the general shapes of the sphere, and straight and uniformly bent finite cylinders were used along with attempts to take into account roughness). It was found that: (1) backscattering cross sections are proportional to volume of the organisms rather than area as would be predicted by a sphere scattering model, (2) mean target strength bas...


Journal of the Acoustical Society of America | 1993

Average echoes from randomly oriented random‐length finite cylinders: Zooplankton models

Timothy K. Stanton; Dezhang Chu; Peter H. Wiebe; Clarence S. Clay

By heuristically extending the previously developed ray solution [Stanton et al. J. Acoust. Soc. Am. 94, 3454–3462 (1993)] to predict the scattering by cylinders over all angles of incidence, approximate expressions are derived which describe the echo energy due to sound scattered by finite cylinders averaged over orientation and length. Both straight and bent finite length cylinders of high aspect ratio are considered over the full range of frequencies (Rayleigh through geometric scattering). The results show that for a sufficiently broad range of orientation, the average echo is largely independent of the degree of bend—that is, the results are essentially the same for both the straight and bent cylinders of various radii of curvature (provided the bend is not too great). Also, in the limit of high frequency (i.e., the acoustic wavelength is much smaller than the cross‐sectional radius of the object), the averages are independent of frequency. The resultant formulas derived herein are useful in describi...


Journal of the Acoustical Society of America | 2007

Determining dominant scatterers of sound in mixed zooplankton populations

Andone C. Lavery; Peter H. Wiebe; Timothy K. Stanton; Gareth L. Lawson; Mark C. Benfield; Nancy J. Copley

High-frequency acoustic scattering techniques have been used to investigate dominant scatterers in mixed zooplankton populations. Volume backscattering was measured in the Gulf of Maine at 43, 120, 200, and 420 kHz. Zooplankton composition and size were determined using net and video sampling techniques, and water properties were determined using conductivity, temperature, and depth sensors. Dominant scatterers have been identified using recently developed scattering models for zooplankton and microstructure. Microstructure generally did not contribute to the scattering. At certain locations, gas-bearing zooplankton, that account for a small fraction of the total abundance and biomass, dominated the scattering at all frequencies. At these locations, acoustically inferred size agreed well with size determined from the net samples. Significant differences between the acoustic, net, and video estimates of abundance for these zooplankton are most likely due to limitations of the net and video techniques. No other type of biological scatterer ever dominated the scattering at all frequencies. Copepods, fluid-like zooplankton that account for most of the abundance and biomass, dominated at select locations only at the highest frequencies. At these locations, acoustically inferred abundance agreed well with net and video estimates. A general approach for the difficult problem of interpreting high-frequency acoustic scattering in mixed zooplankton populations is described.


Journal of the Acoustical Society of America | 1998

Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms

Timothy K. Stanton; Dezhang Chu; Peter H. Wiebe; Linda V. Martin; Robert L. Eastwood

The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236-253 (1998)].

Collaboration


Dive into the Peter H. Wiebe's collaboration.

Top Co-Authors

Avatar

Timothy K. Stanton

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Nancy J. Copley

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gareth L. Lawson

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Dezhang Chu

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Ann Bucklin

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Andone C. Lavery

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Mark C. Benfield

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Cabell S. Davis

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Carin J. Ashjian

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge