Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Chupas is active.

Publication


Featured researches published by Peter J. Chupas.


Science | 2007

The structure of ferrihydrite, a nanocrystalline material.

F. Marc Michel; Lars Ehm; Sytle M. Antao; Peter L. Lee; Peter J. Chupas; Gang Liu; Daniel R. Strongin; Martin A. A. Schoonen; Brian L. Phillips; John B. Parise

Despite the ubiquity of ferrihydrite in natural sediments and its importance as an industrial sorbent, the nanocrystallinity of this iron oxyhydroxide has hampered accurate structure determination by traditional methods that rely on long-range order. We uncovered the atomic arrangement by real-space modeling of the pair distribution function (PDF) derived from direct Fourier transformation of the total x-ray scattering. The PDF for ferrihydrite synthesized with the use of different routes is consistent with a single phase (hexagonal space group P63mc; a = ∼5.95 angstroms, c = ∼9.06 angstroms). In its ideal form, this structure contains 20% tetrahedrally and 80% octahedrally coordinated iron and has a basic structural motif closely related to the Baker-Figgis δ-Keggin cluster. Real-space fitting indicates structural relaxation with decreasing particle size and also suggests that second-order effects such as internal strain, stacking faults, and particle shape contribute to the PDFs.


Nature Materials | 2013

Origin of additional capacities in metal oxide lithium-ion battery electrodes

Yan-Yan Hu; Zigeng Liu; Kyung-Wan Nam; Olaf J. Borkiewicz; Jun Cheng; Xiao Hua; Matthew T. Dunstan; Xiqian Yu; Kamila M. Wiaderek; Lin-Shu Du; Karena W. Chapman; Peter J. Chupas; Xiao-Qing Yang; Clare P. Grey

Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.


Journal of Applied Crystallography | 2003

Rapid‐acquisition pair distribution function (RA‐PDF) analysis

Peter J. Chupas; Xiangyun Qiu; Jonathan C. Hanson; Peter L. Lee; Clare P. Grey; Simon J. L. Billinge

An image-plate (IP) detector coupled with high-energy synchrotron radiation was used for atomic pair distribution function (PDF) analysis, with high probed momentum transfer Qmax ≤ 28.5 A−1, from crystalline materials. Materials with different structural complexities were measured to test the validity of the quantitative data analysis. Experimental results are presented for crystalline Ni, crystalline α-AlF3, and the layered Aurivillius type oxides α-Bi4V2O11 and γ-Bi4V1.7Ti0.3O10.85. Overall, the diffraction patterns show good counting statistics, with measuring time from one to tens of seconds. The PDFs obtained are of high quality. Structures may be refined from these PDFs, and the structural models are consistent with the published literature. Data sets from similar samples are highly reproducible.


Science | 2014

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes

Hao Liu; Fiona C. Strobridge; Olaf J. Borkiewicz; Kamila M. Wiaderek; Karena W. Chapman; Peter J. Chupas; Clare P. Grey

Introduction The ability to achieve high cycling rates in a lithium-ion battery is limited by the Li transport within the electrolyte; the transport of Li ions and electrons within the electrodes; and, when a phase transformation is induced as a result of the Li compositional changes within an electrode, the nucleation and growth of the second phase. The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be key for achieving high rates. This assumption has been challenged by the discovery that some nanoparticulate electrode materials, most notably LiFePO4, can be cycled in a battery at very high rates, even though they cycle between two phases during battery operation. This apparent contradiction has been reconciled by the hypothesis that a nonequilibrium solid solution can be formed during reaction to bypass the nucleation step. Phase transformation from LiFePO4 (blue) to FePO4 (red). The delithiation (indicated by yellow arrows) proceeds at high rates via the formation of a nonequilibrium solid solution phase LixFePO4 (intermediate purple color), avoiding a classical nucleation process (indicated by dashed arrows). When the reaction is interrupted, the particles relax into the equilibrium configuration (shaded region), where only single-phase particles of LiFePO4 and/or FePO4 are present. Rationale To test this proposal, in situ techniques with high temporal resolution must be used to capture the fast phase transformation processes. We performed in situ synchrotron x-ray diffraction (XRD), which readily detects the structural changes and allows for fast data collection, on a LiFePO4-Li battery at high cycling rates, conditions that are able to drive the system away from equilibrium. We used an electrode comprising ~190-nm LiFePO4 particles, carbon, and binder (30:60:10 weight %), along with an electrochemical cell designed to yield reproducible results over multiple cycles, even at high rates. The high carbon content ensures that the reaction at high rates is not limited by either the electronic conductivity or ionic diffusion within the electrode composite. We compared the experimental results with simulated XRD patterns, in which the effects of strain versus compositional variation were explored. We then adapted a whole-pattern fitting method to quantify the compositional variation in the electrode during cycling. Results The XRD patterns, collected during high-rate galvanostatic cycling, show the expected disappearance of LiFePO4 Bragg reflections on charge and the simultaneous formation of FePO4 reflections. In addition, the development of positive intensities between the LiFePO4 and FePO4 reflections indicates that particles with lattice parameters that deviate from the equilibrium values of LiFePO4 and FePO4 are formed. The phenomenon is more pronounced at high currents. Detailed simulations of the XRD patterns reveal that this lattice-parameter variation cannot be explained by a LiFePO4-FePO4 interface within the particles, unless the size of the interface is similar to or greater than the size of the entire particle. Instead, the results indicate compositional variation either within or between particles. Conclusion The results demonstrate the formation of a nonequilibrium solid solution phase, LixFePO4 (0 < x < 1), during high-rate cycling, with compositions that span the entire composition between two thermodynamic phases, LiFePO4 and FePO4. This confirms the hypothesis that phase transformations in nanoparticulate LiFePO4 proceed, at least at high rates, via a continuous change in structure rather than a distinct moving phase boundary between LiFePO4 and FePO4. The ability of LiFePO4 to transform via a nonequilibrium single-phase solid solution, which avoids major structural rearrangement across a moving interface, helps to explain its high-rate performance despite a large Li miscibility gap at room temperature. The creation of a low-energy nonequilibrium path by, for example, particle size reduction or cation doping should enable the high-rate capabilities of other phase-transforming electrode materials. Watching battery materials in action When batteries get rapidly charged and discharged repeatedly, they will often stop working. This is especially true when the cycling changes the crystal structure of the battery components. Liu et al. examined the structural changes in components of a type of lithium battery (see the Perspective by Owen and Hector). Their findings explain why LiFePO4 delivers unexpectedly good electrochemical performances, particularly during rapid cycling. Science, this issue p. 10.1126/science.1252817; see also p. 1451 X-ray diffraction reveals that metastable solid solution reactions undergird the high-rate capability of LiFePO4 electrodes. [Also see Perspective by Owen and Hector] The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.


Journal of the American Chemical Society | 2012

A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as a Positive Electrode

Ali Abouimrane; Damien Dambournet; Karena W. Chapman; Peter J. Chupas; Wei Weng; Khalil Amine

A new class of selenium and selenium-sulfur (Se(x)S(y))-based cathode materials for room temperature lithium and sodium batteries is reported. The structural mechanisms for Li/Na insertion in these electrodes were investigated using pair distribution function (PDF) analysis. Not only does the Se electrode show promising electrochemical performance with both Li and Na anodes, but the additional potential for mixed Se(x)S(y) systems allows for tunable electrodes, combining the high capacities of S-rich systems with the high electrical conductivity of the d-electron containing Se. Unlike the widely studied Li/S system, both Se and Se(x)S(y) can be cycled to high voltages (up to 4.6 V) without failure. Their high densities and voltage output offer greater volumetric energy densities than S-based batteries, opening possibilities for new energy storage systems that can enable electric vehicles and smart grids.


Journal of the American Chemical Society | 2011

Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8

Dorina F. Sava; Mark A. Rodriguez; Karena W. Chapman; Peter J. Chupas; Jeffery A. Greathouse; Paul S. Crozier; Tina M. Nenoff

Here we present detailed structural evidence of captured molecular iodine (I(2)), a volatile gaseous fission product, within the metal-organic framework ZIF-8 [zeolitic imidazolate framework-8 or Zn(2-methylimidazolate)(2)]. There is worldwide interest in the effective capture and storage of radioiodine, as it is both produced from nuclear fuel reprocessing and also commonly released in nuclear reactor accidents. Insights from multiple complementary experimental and computational probes were combined to locate I(2) molecules crystallographically inside the sodalite cages of ZIF-8 and to understand the capture of I(2) via bonding with the framework. These structural tools included high-resolution synchrotron powder X-ray diffraction, pair distribution function analysis, and molecular modeling simulations. Additional tests indicated that extruded ZIF-8 pellets perform on par with ZIF-8 powder and are industrially suitable for I(2) capture.


Journal of the American Chemical Society | 2009

Pressure-Induced Amorphization and Porosity Modification in a Metal−Organic Framework

Karena W. Chapman; Gregory J. Halder; Peter J. Chupas

The impact of modest, industrially accessible pressures (0-1.2 GPa) on the structure and porosity of the zeolitic imidazolate framework Zn(2-methylimidazole)(2), ZIF-8, was investigated using in situ powder X-ray diffraction in combination with sorption measurements for pressure-treated samples. The framework is highly compressible, with a bulk modulus (K = -V partial differential P/partial differential V) of 6.52(35) GPa, the most compressible metal-organic framework (MOF) documented to date. The framework undergoes an irreversible pressure-induced amorphization following compression beyond 0.34 GPa. The pressure-amorphized ZIF-8 remains porous, although the sorption characteristics are distinctly altered compared to the pristine material. As such, pressure can provide a new route to systematically modify the sorption behavior and other functional properties of MOFs, a nontraditional form of postsynthetic modification. Importantly, pressure modification of MOFs is effective at lower pressures than in other porous materials (e.g., zeolites) and, as such, is easily scalable and industrially relevant.


Journal of the American Chemical Society | 2010

Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation

Karena W. Chapman; Peter J. Chupas; Tina M. Nenoff

The effective capture and storage of radiological iodine ((129)I) remains a strong concern for safe nuclear waste storage and safe nuclear energy. Silver-containing mordenite (MOR) is a longstanding benchmark for iodine capture; however, the molecular level understanding of this process needed to develop more effective iodine getters has remained elusive. Here we probe the structure and distribution of iodine sorbed by silver-containing MOR using differential pair distribution function analysis. While iodine is distributed between gamma-AgI nanoparticles on the zeolite surface and subnanometer alpha-AgI clusters within the pores for reduced silver MOR, in the case of unreduced silver-exchanged MOR, iodine is exclusively confined to the pores as subnanometer alpha-AgI. Consequently, unreduced silver-containing zeolites may offer a more secure route for radioactive iodine capture, with the potential to more effectively trap the iodine for long-term storage.


Journal of the American Chemical Society | 2010

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3

Benjamin K. Greve; Kenneth L. Martin; Peter L. Lee; Peter J. Chupas; Karena W. Chapman; Angus P. Wilkinson

Scandium trifluoride maintains a cubic ReO(3) type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at ∼300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, α(l) ≈ -14 ppm K(-1)). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW(2)O(8) and positive thermal expansion above ∼1100 K. While the cubic ReO(3) structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF(3) is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.


Journal of Applied Crystallography | 2007

Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements

Peter J. Chupas; Karena W. Chapman; Peter L. Lee

The application of a large-area (41 x 41 cm, 2048 x 2048 or 1024 x 1024 pixel) high-sensitivity (detective quantum efficiency > 65%) fast-readout (up to 7.5 or 30 Hz) flat-panel detector based on an amorphous silicon array system to the collection of high-energy X-ray scattering data for quantitative pair distribution function (PDF) analysis is evaluated and discussed. Data were collected over a range of exposure times (0.13 s-7 min) for benchmark PDF samples: crystalline nickel metal and amorphous silica (SiO2). The high real-space resolution of the resultant PDFs (with Q{sub max} up to {approx} 40 Angstroms{sup -1})and the high quality of fits to data [RNi(0.13s) = 10.5%, RNi(1.3s) = 6.3%] obtained in short measurement times indicate that this detector is well suited to studies of materials disorder. Further applications of the detector to locate weakly scattering H2 molecules within the porous Prussian blue system, Mn{sup II}{sub 3}[CoIII(CN)6]2 x xH2, and to follow the in situ reduction of PtIVO2 to Pt0 at 30 Hz, confirm the high sensitivity of the detector and demonstrate a new potential for fast time-resolved studies.

Collaboration


Dive into the Peter J. Chupas's collaboration.

Top Co-Authors

Avatar

Karena W. Chapman

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Olaf J. Borkiewicz

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamila M. Wiaderek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Haiyan Zhao

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter L. Lee

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina M. Nenoff

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Hao Liu

China Academy of Engineering Physics

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Halder

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge