Peter R. Gent
National Center for Atmospheric Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter R. Gent.
Journal of Physical Oceanography | 1990
Peter R. Gent; James C. McWilliams
Abstract A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-resolving ocean circulation models. The mixing is applied in isopycnal coordinates to isopycnal layer thickness, or inverse density gradient, as well as to passive scalars, temperature and salinity. The transformation of these mixing forms to physical coordinates is also presented.
Journal of Climate | 2004
Peter R. Gent; Gokhan Danabasoglu; Leo J. Donner; Marika M. Holland; Elizabeth C. Hunke; Steven R. Jayne; David M. Lawrence; Richard Neale; Philip J. Rasch; Mariana Vertenstein; Patrick H. Worley; Zong-Liang Yang; Minghua Zhang
AbstractThe fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...
Bulletin of the American Meteorological Society | 2013
James W. Hurrell; Marika M. Holland; Peter R. Gent; Steven J. Ghan; Jennifer E. Kay; Paul J. Kushner; Jean-Francois Lamarque; William G. Large; David M. Lawrence; Keith Lindsay; William H. Lipscomb; Matthew C. Long; Natalie M. Mahowald; Daniel R. Marsh; Richard Neale; Philip J. Rasch; Steven J. Vavrus; Mariana Vertenstein; David C. Bader; William D. Collins; James J. Hack; Jeffrey T. Kiehl; Shawn J. Marshall
The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad com...
Journal of Physical Oceanography | 1995
Peter R. Gent; Jürgen Willebrand; Trevor J. McDougall; James C. McWilliams
Abstract It is shown that the effects of mesoscale eddies on tracer transports can be parameterized in a large-scale model by additional advection and diffusion of tracers. Thus, tracers are advected by the effective transport velocity, which is the sum of the large-scale velocity and the eddy-induced transport velocity. The density and continuity equations are the familiar equations for adiabatic, Boussinesq, and incompressible flow with the effective transport velocity replacing the large-scale velocity. One of the main points of this paper is to show how simple the parameterization of Gent and McWilliams appears when interpreted in terms of the effective transport velocity. This was not done in their original 1990 paper. It is also shown that, with the Gent and McWilliams parameterization, potential vorticity in the planetary geostrophic model satisfies an equation close to that for tracers. The analogy of this parameterization with vertical mixing of momentum is then described. The effect of the Gent ...
Monthly Weather Review | 1995
Carlos R. Mechoso; A.W. Robertson; N. Barth; Michael K. Davey; Pascale Delecluse; Peter R. Gent; S. Ineson; Ben P. Kirtman; Mojib Latif; H. Le Treut; T. Nagai; J. D. Neelin; S.G.H. Philander; J. Polcher; Paul S. Schopf; T. Stockdale; Max J. Suarez; Laurent Terray; Olivier Thual; Joseph Tribbia
Abstract The seasonal cycle over the tropical Pacific simulated by 11 coupled ocean–atmosphere general circulation models (GCMs) is examined. Each model consists of a high-resolution ocean GCM of either the tropical Pacific or near-global means coupled to a moderate- or high-resolution atmospheric GCM, without the use of flux correction. The seasonal behavior of sea surface temperature (SST) and eastern Pacific rainfall is presented for each model. The results show that current state-of-the-art coupled GCMs share important successes and troublesome systematic errors. All 11 models are able to simulate the mean zonal gradient in SST at the equator over the central Pacific. The simulated equatorial cold tongue generally tends to be too strong, too narrow, and extend too far west. SSTs are generally too warm in a broad region west of Peru and in a band near 10°S. This is accompanied in some models by a double intertropical convergence zone (ITCZ) straddling the equator over the eastern Pacific, and in others...
Journal of Climate | 1998
Byron A. Boville; Peter R. Gent
The NCAR Climate System Model, version one, is described. The spinup procedure prior to a fully coupled integration is discussed. The fully coupled model has been run for 300 yr with no surface flux corrections in momentum, heat, or freshwater. There is virtually no trend in the surface temperatures over the 300 yr, although there are significant trends in other model fields, especially in the deep ocean. The reasons for the successful integration with no surface temperature trend are discussed.
Science | 1994
Gokhan Danabasoglu; James C. McWilliams; Peter R. Gent
Ocean models routinely used in simulations of the Earths climate do not resolve mesoscale eddies because of the immense computational cost. A new parameterization of the effects of these eddies has been implemented in a widely used model. A comparison of its solution with that of the conventional parameterization shows significant improvements in the global temperature distribution, the poleward and surface heat fluxes, and the locations of deep-water formation.
Journal of Climate | 1998
Peter R. Gent; Frank O. Bryan; Gokhan Danabasoglu; Scott C. Doney; William R. Holland; William G. Large; James C. McWilliams
This paper describes the global ocean component of the NCAR Climate System Model. New parameterizations of the effects of mesoscale eddies and of the upper-ocean boundary layer are included. Numerical improvements include a third-order upwind advection scheme and elimination of the artificial North Pole island in the original MOM 1.1 code. Updated forcing fields are used to drive the ocean-alone solution, which is integrated long enough so that it is in equilibrium. The ocean transports and potential temperature and salinity distributions are compared with observations. The solution sensitivity to the freshwater forcing distribution is highlighted, and the sensitivity to resolution is also briefly discussed.
Climate Dynamics | 2001
Gerald A. Meehl; Peter R. Gent; Julie M. Arblaster; Bette L. Otto-Bliesner; Esther C. Brady; Anthony P. Craig
Abstract Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations.
Journal of Computational Physics | 1989
Peter R. Gent; Mark A. Cane
Abstract This paper describes a fourth-order finite difference model of the equatorial ocean that is designed to study dynamic and thermodynamic processes on time scales of a decade or less. It is a primitive equation model employing the reduced gravity assumption so that the deep ocean is at rest below the active upper ocean. The model consists of a surface mixed layer and an active layer below, which is divided into an arbitrary number of numerical layers by means of a sigma coordinate. The model can be used in an unstratified version, when temperature acts as a passive tracer, as well as in the full stratified version. The numerical formulation of the model is described in detail. Experiments comparing three different horizontal smoothers: Shapiro filter, Laplacian friction, and biharmonic friction are presented. It is concluded that, at the level needed to maintain computational stability, the Shapiro filter damps the fields least; in addition, it is faster and easier to implement when the horizontal finite difference grid is stretched.