Peter R. Johnston
Landcare Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter R. Johnston.
Systematic Biology | 2009
Conrad L. Schoch; Gi Ho Sung; Francesc López-Giráldez; Jeffrey P. Townsend; Jolanta Miadlikowska; Valérie Hofstetter; Barbara Robbertse; P. Brandon Matheny; Frank Kauff; Zheng Wang; Cécile Gueidan; Rachael M. Andrie; Kristin M. Trippe; Linda M. Ciufetti; Anja Amtoft Wynns; Emily Fraker; Brendan P. Hodkinson; Gregory Bonito; Johannes Z. Groenewald; Mahdi Arzanlou; G. Sybren de Hoog; Pedro W. Crous; David Hewitt; Donald H. Pfister; Kristin R. Peterson; Marieka Gryzenhout; Michael J. Wingfield; André Aptroot; Sung Oui Suh; Meredith Blackwell
We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.
Studies in Mycology | 2012
Bevan S. Weir; Peter R. Johnston; Ulrike Damm
The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity significance. In addition to the accepted species, notes are provided for names where a possible close relationship with C. gloeosporioides sensu lato has been suggested in the recent literature, along with all subspecific taxa and formae speciales within C. gloeosporioides and its putative teleomorph Glomerella cingulata. Taxonomic novelties: Name replacement - C. queenslandicum B. Weir & P.R. Johnst. New species - C. aenigma B. Weir & P.R. Johnst., C. aeschynomenes B. Weir & P.R. Johnst., C. alatae B. Weir & P.R. Johnst., C. alienum B. Weir & P.R. Johnst, C. aotearoa B. Weir & P.R. Johnst., C. clidemiae B. Weir & P.R. Johnst., C. salsolae B. Weir & P.R. Johnst., C. ti B. Weir & P.R. Johnst. New subspecies - C. kahawae subsp. ciggaro B. Weir & P.R. Johnst. Typification: Epitypification - C. queenslandicum B. Weir & P.R. Johnst.
Studies in Mycology | 2012
Paul F. Cannon; Ulrike Damm; Peter R. Johnston; Bevan S. Weir
A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment.
Fungal Genetics and Biology | 2009
Kerry O'Donnell; Cécile Gueidan; Stacy Sink; Peter R. Johnston; Pedro W. Crous; Anthony E. Glenn; Ron Riley; Nicholas C. Zitomer; Patrick Colyer; Cees Waalwijk; Theo van der Lee; Antonio Moretti; Seogchan Kang; Hye Seon Kim; David M. Geiser; Jean H. Juba; R. P. Baayen; M. G. Cromey; Sean Bithell; Deanna A. Sutton; Kerstin Skovgaard; Randy C. Ploetz; H. Corby Kistler; Monica L. Elliott; Mike Davis; Brice A. J. Sarver
We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex (FOSC). Of the 850 isolates typed, 101 EF-1alpha, 203 IGS rDNA, and 256 two-locus sequence types (STs) were differentiated. Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant. This analysis also revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin. A congruence analysis, comparing partial EF-1alpha and IGS rDNA bootstrap consensus, identified a significant number of conflicting relationships dispersed throughout the bipartitions, suggesting that some of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework.
Mycologia | 1997
Peter R. Johnston; Derek Jones
Isolates of Colletotrichum associated with fruit rots in New Zealand were used to test the ap- plicability of morphological, cultural, and rDNA se- quence data to clarify relationships within this genus. Morphological and cultural features were used to rec- ognize 16 distinct groups among the New Zealand fruit-rotting isolates. These included the currently ac- cepted species C. coccodes, C. musae, C. orbiculare, and Glomerella miyabeana as well as 3 C. acutatum- like groups and 9 C. gloeosporioides-like groups. Anal- ysis of rDNA sequences from the D2 region allowed the isolates to be separated into 4 broad groups (the relationships of C. coccodes remaining unresolved), the various morphological/cultural groups clustering as subgroups among the rDNA sequence groups. The same 4 groups were recognized when rDNA sequenc- es from the New Zealand isolates were compared with those from Colletotrichum isolates from other hosts and other countries. Taxonomic treatment of the
Mycologia | 2003
John C. Guerber; Bo Liu; J. C. Correll; Peter R. Johnston
A diverse collection of isolates identified as Colletotrichum acutatum, including a range of fruit-rot and foliar pathogens, was examined for mtDNA RFLPs and RFLPs and sequence variation of a 900-bp intron of the glutamine synthetase (GS) gene and a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene. RFLPs of mtDNA, RFLPs of the 900-bp GS intron and sequence analysis of each intron identified the same seven distinct molecular groups, or clades, within C. acutatum sensu lato. Sequence analysis produced highly concordant tree topologies with definitive phylogenetic relationships within and between the clades. The clades might represent phylogenetically distinct species within C. acutatum sensu lato. Mating tests also were conducted to assess sexual compatibility with tester isolates known to outcross to form the teleomorph Glomerella acutata. Mating compatibility was identified within one clade, C, and between two phylogenetically distinct clades, C and J4. The C clade represented isolates from a wide range of hosts and geographic origins. J4 clade contained isolates from Australia or New Zealand recovered from fruit rot and pine seedlings with terminal crook disease. That isolates in two phylogenetically distinct clades were capable of mating suggests that genetic isolation occurred before reproductive isolation. No other isolates were sexually compatible with the mating testers, which also were in groups C and J4. Certain clades identified by mtDNA and intron analysis (D1, J3 and J6) appeared to represent relatively host-limited populations. Other clades (C1, F1 and J4) contained isolates from a wide range of hosts. Isolates described as C. acutatum f. sp. pineum were clearly polyphyletic.
Studies in Mycology | 2012
Ulrike Damm; Paul F. Cannon; J.H.C. Woudenberg; Peter R. Johnston; Bevan S. Weir; Yu Pei Tan; Roger G. Shivas; Pedro W. Crous
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. Taxonomic novelties: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.
Fungal Biology | 1999
R. Lardner; Peter R. Johnston; Kim M. Plummer; Michael N. Pearson
The genetic relationships between several morphological groups recognized within Colletotrichum acutatum sensu lato were investigated using RAPD analysis and vegetative compatibility analysis. Isolates were examined from fruit rots originating in New Zealand and Australia, from Lupinus spp. in New Zealand, Canada, France and the U.K., and from Pinus radiata in New Zealand and Australia. The genetic distinctness of the groups recognized morphologically is confirmed. Two genetically distinct groups of C. acutatum-like pathogens are recognized from lupin, one comprising isolates from New Zealand and the U.K., the other isolates from Canada and France. C. acutatum f. sp. pineum isolates from New Zealand and Australia form two genetically distinct groups.
Mycologia | 2012
Kerry O'Donnell; Richard A. Humber; David M. Geiser; Seogchan Kang; Bongsoo Park; Vincent Robert; Pedro W. Crous; Peter R. Johnston; Takayuki Aoki; Alejandro P. Rooney; Stephen A. Rehner
We constructed several multilocus DNA sequence datasets to assess the phylogenetic diversity of insecticolous fusaria, especially focusing on those housed at the Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF), and to aid molecular identifications of unknowns via the FUSARIUM-ID and Fusarium MLST online databases and analysis packages. Analyses of a 190-taxon, two-locus dataset, which included 159 isolates from insects, indicated that: (i) insect-associated fusaria were nested within 10 species complexes spanning the phylogenetic breadth of Fusarium, (ii) novel, putatively unnamed insecticolous species were nested within 8/10 species complexes and (iii) Latin binomials could be applied with confidence to only 18/58 phylogenetically distinct fusaria associated with pest insects. Phylogenetic analyses of an 82-taxon, three-locus dataset nearly fully resolved evolutionary relationships among the 10 clades containing insecticolous fusaria. Multilocus typing of isolates within four species complexes identified surprisingly high genetic diversity in that 63/65 of the fusaria typed represented newly discovered haplotypes. The DNA sequence data, together with corrected ABI sequence chromatograms and alignments, have been uploaded to the following websites dedicated to identifying fusaria: FUSARIUM-ID (http://isolate.fusariumdb.org) at Pennsylvania State University’s Department of Plant Pathology and Fusarium MLST (http://www.cbs.knaw.nl/fusarium) at the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center.
New Zealand Journal of Botany | 2000
Eric H. C. McKenzie; Peter K. Buchanan; Peter R. Johnston
Abstract An annotated list is provided of 906 taxa of fungi (including oomycetes and myxomycetes) which have been recorded in New Zealand in close association with the five endemic taxa of Nothofagus (southern beech), as ectomycorrhizal mycobionts, pathogens, or saprobes causing decay of wood and leaves. The list has been compiled from data associated with specimens held in Herbarium PDD and in Herbarium NZFRI(M), and from the literature. Nothofagus forests are an important conservation resource, and a vast storehouse for New Zealand fungi; approximately 35% of the known New Zealand agaric mycota are associated with Nothofagus, and 50% of the known polypore species. Of the 226 named species of ectomycorrhizal fungi found in New Zealand beech forests (205 agarics, 19 Aphyllophorales — clavarioid, hydnoid, etc., 1 as‐comycete, 1 mitosporic fungus), about 90% are native, with most of these being endemic. Six mycorrhizal agaric genera are especially well represented: Amanita (11 species), Cortinarius (57 speties), Democybe (11 species), Inocybe (13 species), Russula (23 species), and Thaxterogaster (13 species). Few pathogens have been recorded. The most conspicuous of these are three Cyttaria spp. (beech strawberries) found only on N. menziesii. Two mitosporic fungi, Nodulisporium sp. and Sporothrix sp., in association with various insects, may be partially responsible for beech forest decline. Sooty mould fungi, growing on honeydew secreted by scale insects, produce conspicuous black growth on beech trees. Such growth can be caused by representatives of 10 genera of ascomycetes and mitosporic fungi, many of which also grow on other host plants. Large numbers of saprobic fungi are recorded on beech wood or twigs and leaf litter, and some of these cause economically significant wood rots and sapstain.