Thomas J. D. Jørgensen
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas J. D. Jørgensen.
Molecular & Cellular Proteomics | 2005
Martin R. Larsen; Tine E. Thingholm; Ole Nørregaard Jensen; Peter Roepstorff; Thomas J. D. Jørgensen
Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation is often substoichiometric, and an enrichment procedure of phosphorylated peptides derived from phosphorylated proteins is a necessary prerequisite for the characterization of such peptides by modern mass spectrometric methods. We report a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented.
Nature Protocols | 2006
Tine E. Thingholm; Thomas J. D. Jørgensen; Ole Nørregaard Jensen; Martin R. Larsen
The characterization of phosphorylated proteins is a challenging analytical task since many of the proteins targeted for phosphorylation are low in abundance and phosphorylation is typically substoichiometric. Highly efficient enrichment procedures are therefore required. Here we describe a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro-column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline solution (pH ≥ 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass spectrometry (MS). It is a very easy and fast method. The entire protocol requires less than 15 min per sample if the buffers have been prepared in advance (not including lyophilization).
Proceedings of the National Academy of Sciences of the United States of America | 2002
Frank Staubli; Thomas J. D. Jørgensen; Giuseppe Cazzamali; Michael Williamson; Camilla Lenz; Leif Søndergaard; Peter Roepstorff; Cornelis J. P. Grimmelikhuijzen
The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and, therefore, to a better understanding of AKH heterogeneity and actions. Interestingly, the insect AKH receptors are structurally and evolutionarily related to the gonadotropin-releasing hormone receptors from vertebrates.
Analytical Chemistry | 2009
Kasper D. Rand; Martin Zehl; Ole Nørregaard Jensen; Thomas J. D. Jørgensen
Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin proteolysis of the labeled protein, the assignment of deuteriums to individual residues is typically not obtained, thereby limiting a detailed understanding of HX and the dynamics of protein structure. Here we use gas-phase fragmentation of peptic peptides by electron transfer dissociation (ETD) to measure the HX of individual amide linkages in the amyloidogenic protein beta2-microglobulin. A comparison of the deuterium levels of 60 individual backbone amides of beta2-microglobulin measured by HX-ETD-MS analysis to the corresponding values measured by NMR spectroscopy shows an excellent correlation. The deuterium labeling pattern of beta2-microglobulin is retained in the gaseous fragment ions by employing mild declustering conditions for electrospray ionization. A recently developed model peptide is used to arrive at such ion source declustering conditions that prevent the occurrence of intramolecular gas-phase hydrogen (1H/2H) migration (i.e., hydrogen scrambling). This article demonstrates that ETD can be implemented in a mass spectrometric method to monitor the conformational dynamics of proteins in solution at single-residue resolution.
Journal of Immunology | 2010
Søren Hansen; Lana Selman; Nades Palaniyar; Karel Ziegler; Jette Brandt; Anette Kliem; Maiken Jonasson; Mikkel-Ole Skjoedt; Ole Haagen Nielsen; Kevan L. Hartshorn; Thomas J. D. Jørgensen; Karsten Skjødt; Uffe Holmskov
Collectins play important roles in the innate immune defense against microorganisms. Recently, a new collectin, collectin 11 (CL-11 or CL-K1), was identified via database searches. In present work, we characterize the structural and functional properties of CL-11. Under nonreducing conditions, in gel permeation chromatography recombinant CL-11 forms disulfide-linked oligomers of 100 and 200 kDa. A mAb-based ELISA estimates the concentration of CL-11 in plasma to be 2.1 μg/ml, and the presence of CL-11 in plasma was further verified by Western blotting and mass spectrometry. Mannan-binding lectin-associated serine protease 1 (MASP-1) copurified with CL-11 and the interaction in plasma with MASP-1 and/or MASP-3 was further demonstrated using ELISA. We identified the adrenal glands, the kidneys, and the liver as primary sites of expression. CL-11 lectin activity was demonstrated by ELISA and showed that CL-11 has preference for l-fucose and d-mannose. We finally show that CL-11 binds to intact bacteria, fungi, and viruses and that CL-11 decreases influenza A virus infectivity and forms complexes with DNA. On the basis of the significant concentration of CL-11 in circulation and CL-11’s interaction with various microorganisms and MASP-1 and/or MASP-3, it is conceivable that CL-11 plays a role in activation of the complement system and in the defense against invading microorganisms.
Journal of the American Chemical Society | 2008
Kasper D. Rand; Christopher M. Adams; Roman A. Zubarev; Thomas J. D. Jørgensen
Hydrogen (1H/2H) exchange combined with mass spectrometry (HX-MS) has become a recognized method for the analysis of protein structural dynamics. Presently, the incorporated deuterons are typically localized by enzymatic cleavage of the labeled proteins and single residue resolution is normally only obtained for a few residues. Determination of site-specific deuterium levels by gas-phase fragmentation in tandem mass spectrometers would greatly increase the applicability of the HX-MS method. The biggest obstacle in achieving this goal is the intramolecular hydrogen migration (i.e., hydrogen scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited in the electrospray ion source by, e.g., high declustering potentials or during precursor ion selection (via sideband excitation) in the external linear quadrupole ion trap undergo nearly complete hydrogen (1H/2H) scrambling. Similarly, collision-induced dissociation (CID) in the external linear quadrupole ion trap results in complete or extensive hydrogen (1H/2H) scrambling. This precludes the use of CID as a method to obtain site-specific information from proteins that are labeled in solution-phase 1H/2H exchange experiments. In contrast, the deuteration levels of the c- and z-fragment ions generated from ECD closely mimic the known solution deuteration pattern of the selectively labeled peptides. This excellent correlation between the results obtained from gas phase and solution suggests that ECD holds great promise as a general method to obtain single residue resolution in proteins from solution 1H/2H exchange experiments.
Rapid Communications in Mass Spectrometry | 2012
Rune Salbo; Matthew F. Bush; Helle Naver; Iain Campuzano; Carol V. Robinson; Ingrid Pettersson; Thomas J. D. Jørgensen; Kim F. Haselmann
RATIONALE The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of instrument parameters and calibration standards are crucial for obtaining accurate T-wave Ω-values. METHODS Human insulin and the fast-acting insulin aspart under native-like conditions (ammonium acetate, physiological pH) were analyzed on Waters SYNAPT G1 and G2 HDMS instruments. The calibrated T-wave Ω-values of insulin monomer, dimer, and hexamer ions were measured using many different combinations of denatured and native-like calibrants (masses between 2.85 and 256 kDa) and T-wave conditions. Drift-tube Ω-values were obtained on a modified SYNAPT G1. RESULTS Insulin T-wave Ω-values were measured at 26 combinations of T-wave velocity and amplitude. Optimal sets of calibrants were identified that yield Ω-values with minimal dependence on T-wave conditions and calibration plots with high R(2)-values. The T-wave Ω-values determined under conditions satisfying these criteria had absolute errors <2%. Structural differences between human insulin and fast-acting insulin aspart were probed with IM-MS. Insulin aspart monomers have increased flexibility, while hexamers are more compact than human insulin. CONCLUSIONS Accurate T-wave Ω-values that are indistinguishable from drift-tube values are obtained when using (1) native-like calibrants with masses that closely bracket that of the analyte, (2) T-wave velocities that maximize the R(2) of the calibration plot for those calibrants, and (3) at least three replicates at T-wave velocities that yield calibration plots with high R(2).
Nature Chemical Biology | 2009
Valerie Hindie; Adriana Stroba; Hua Zhang; Laura A. Lopez-Garcia; Leila Idrissova; Stefan Zeuzem; Daniel Hirschberg; Francis Schaeffer; Thomas J. D. Jørgensen; Matthias Engel; Pedro M. Alzari; Ricardo M. Biondi
Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal and in solution using a fluorescence-based assay and deuterium exchange experiments. Our results indicate that the binding of the compound produces local changes at the target site, the PIF binding pocket, and also allosteric changes at the ATP binding site and the activation loop. Altogether, we present molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes.
Rapid Communications in Mass Spectrometry | 2012
Rune Salbo; Matthew F. Bush; Helle Naver; Iain Campuzano; Carol V. Robinson; Ingrid Pettersson; Thomas J. D. Jørgensen; Kim F. Haselmann
RATIONALE The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of instrument parameters and calibration standards are crucial for obtaining accurate T-wave Ω-values. METHODS Human insulin and the fast-acting insulin aspart under native-like conditions (ammonium acetate, physiological pH) were analyzed on Waters SYNAPT G1 and G2 HDMS instruments. The calibrated T-wave Ω-values of insulin monomer, dimer, and hexamer ions were measured using many different combinations of denatured and native-like calibrants (masses between 2.85 and 256 kDa) and T-wave conditions. Drift-tube Ω-values were obtained on a modified SYNAPT G1. RESULTS Insulin T-wave Ω-values were measured at 26 combinations of T-wave velocity and amplitude. Optimal sets of calibrants were identified that yield Ω-values with minimal dependence on T-wave conditions and calibration plots with high R(2)-values. The T-wave Ω-values determined under conditions satisfying these criteria had absolute errors <2%. Structural differences between human insulin and fast-acting insulin aspart were probed with IM-MS. Insulin aspart monomers have increased flexibility, while hexamers are more compact than human insulin. CONCLUSIONS Accurate T-wave Ω-values that are indistinguishable from drift-tube values are obtained when using (1) native-like calibrants with masses that closely bracket that of the analyte, (2) T-wave velocities that maximize the R(2) of the calibration plot for those calibrants, and (3) at least three replicates at T-wave velocities that yield calibration plots with high R(2).
Review of Scientific Instruments | 2002
J.U. Andersen; P. Hvelplund; Steen Brøndsted Nielsen; S. Tomita; Helge Wahlgreen; S.P. Møller; U. V. Pedersen; James S. Forster; Thomas J. D. Jørgensen
An electrospray ion source has been coupled to an accelerator that injects ions into an electrostatic heavy-ion storage ring. Since the dc ion current produced by electrospray ionization is low (∼106 ions/s), ions are accumulated in a cylindrical ion trap filled with a helium buffer gas. The ions are collisionally damped in the buffer gas and confined to the central trap region by a rf field. Extraction from the trap occurs within a few microseconds and after acceleration through 22 kV, the ions of interest are selected by a magnet according to their mass to charge ratio. The ion bunch is subsequently injected into the ring. Both positive and negative ions have been stored, with masses ranging over 3 orders of magnitude (∼102–104 Da). From a pickup signal in the ring, the number of ions in a bunch is estimated to be of the order of 103–104 when the accumulation time is 0.1 s. Our first measurements show that we can store a sufficient number of ions to study the decay of metastable ions and to determine re...