Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Smibert is active.

Publication


Featured researches published by Peter Smibert.


Proceedings of the National Academy of Sciences of the United States of America | 2011

miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling

Alberto Dávalos; Leigh Goedeke; Peter Smibert; Cristina M. Ramírez; Nikhil Warrier; Ursula Andreo; Daniel Cirera-Salinas; Katey J. Rayner; Uthra Suresh; José Carlos Pastor-Pareja; Enric Esplugues; Edward A. Fisher; Luiz O. F. Penalva; Kathryn J. Moore; Yajaira Suárez; Eric C. Lai; Carlos Fernández-Hernando

Cellular imbalances of cholesterol and fatty acid metabolism result in pathological processes, including atherosclerosis and metabolic syndrome. Recent work from our group and others has shown that the intronic microRNAs hsa-miR-33a and hsa-miR-33b are located within the sterol regulatory element-binding protein-2 and -1 genes, respectively, and regulate cholesterol homeostasis in concert with their host genes. Here, we show that miR-33a and -b also regulate genes involved in fatty acid metabolism and insulin signaling. miR-33a and -b target key enzymes involved in the regulation of fatty acid oxidation, including carnitine O-octaniltransferase, carnitine palmitoyltransferase 1A, hydroxyacyl-CoA-dehydrogenase, Sirtuin 6 (SIRT6), and AMP kinase subunit-α. Moreover, miR-33a and -b also target the insulin receptor substrate 2, an essential component of the insulin-signaling pathway in the liver. Overexpression of miR-33a and -b reduces both fatty acid oxidation and insulin signaling in hepatic cell lines, whereas inhibition of endogenous miR-33a and -b increases these two metabolic pathways. Together, these data establish that miR-33a and -b regulate pathways controlling three of the risk factors of metabolic syndrome, namely levels of HDL, triglycerides, and insulin signaling, and suggest that inhibitors of miR-33a and -b may be useful in the treatment of this growing health concern.


Nature Methods | 2017

Simultaneous epitope and transcriptome measurement in single cells

Marlon Stoeckius; Christoph Hafemeister; William Stephenson; Brian Houck-Loomis; Pratip K. Chattopadhyay; Harold Swerdlow; Rahul Satija; Peter Smibert

High-throughput single-cell RNA sequencing has transformed our understanding of complex cell populations, but it does not provide phenotypic information such as cell-surface protein levels. Here, we describe cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), a method in which oligonucleotide-labeled antibodies are used to integrate cellular protein and transcriptome measurements into an efficient, single-cell readout. CITE-seq is compatible with existing single-cell sequencing approaches and scales readily with throughput increases.


Nature Structural & Molecular Biology | 2013

Homeostatic control of Argonaute stability by microRNA availability

Peter Smibert; Jr-Shiuan Yang; Ghows Azzam; Ji-Long Liu; Eric C. Lai

Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.


Molecular and Cellular Biology | 2009

A Drosophila pasha Mutant Distinguishes the Canonical MicroRNA and Mirtron Pathways

Raquel Martin; Peter Smibert; Abdullah Yalcin; David M. Tyler; Ulrich Schäfer; Thomas Tuschl; Eric C. Lai

ABSTRACT Canonical primary microRNA (miRNA) transcripts and mirtrons are proposed to transit distinct nuclear pathways en route to generating mature ∼22 nucleotide regulatory RNAs. We generated a null allele of Drosophila pasha, which encodes a double-stranded RNA-binding protein partner of the RNase III enzyme Drosha. Analysis of this mutant yielded stringent evidence that Pasha is essential for the biogenesis of canonical miRNAs but is dispensable for the processing and function of mirtron-derived regulatory RNAs. The pasha mutant also provided a unique tool to study the developmental requirements for Drosophila miRNAs. While pasha adult somatic clones are similar in many respects to those of dicer-1 clones, pasha mutant larvae revealed an unexpected requirement for the miRNA pathway in imaginal disc growth. These data suggest limitations to somatic clonal analysis of miRNA pathway components.


Cell Cycle | 2008

Lessons from microRNA mutants in worms, flies and mice

Peter Smibert; Eric C. Lai

It is apparent that microRNAs (miRNAs) are important components in the regulation of genetic networks in many biological contexts. Based on computational analysis, typical miRNAs are inferred to have tens to hundreds of conserved targets. Many miRNA-target interactions have been validated by various means, including heterologous tests in cultured cells and gain-of-function approaches that can yield striking phenotypes in whole animals. However, these strategies do not report on the endogenous importance of such miRNA activities. Likewise, studies of miRNA pathway mutants can suggest an endogenous role for miRNAs in a given setting, but do not identify roles for specific miRNAs. Therefore, these approaches must be complemented with the analysis of miRNA mutant alleles. In this review, we describe some of the lessons learned from studying miRNA gene deletions in worms, flies and mice, and discuss their implications for the control of endogenous regulatory networks.


Seminars in Cell & Developmental Biology | 2010

A view from Drosophila: Multiple biological functions for individual microRNAs

Peter Smibert; Eric C. Lai

microRNAs (miRNAs) comprise an extensive class of post-transcriptional regulatory molecules in higher eukaryotes. Intensive research in Drosophila has revealed that miRNAs control myriad developmental and physiological processes. Interestingly, several of the best-studied miRNAs impact multiple biological processes, often by regulating distinct key target genes in each setting. Here we discuss the roles of some of these pleiotropic miRNAs, and their implications for studying and interpreting the roles of miRNAs in gene regulatory networks.


Developmental Biology | 2012

Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division.

Ghows Azzam; Peter Smibert; Eric C. Lai; Ji-Long Liu

Argonaute 1 (Ago1) is a member of the Argonaute/PIWI protein family involved in small RNA-mediated gene regulation. In Drosophila, Ago1 plays a specific role in microRNA (miRNA) biogenesis and function. Previous studies have demonstrated that Ago1 regulates the fate of germline stem cells. However, the function of Ago1 in other aspects of oogenesis is still elusive. Here we report the function of Ago1 in developing egg chambers. We find that Ago1 protein is enriched in the oocytes and is also highly expressed in the cytoplasm of follicle cells. Clonal analysis of multiple ago1 mutant alleles shows that many mutant egg chambers contain only 8 nurse cells without an oocyte which is phenocopied in dicer-1, pasha and drosha mutants. Our results suggest that Ago1 and its miRNA biogenesis partners play a role in oocyte determination and germline cell division in Drosophila.


Development | 2013

The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis.

Raluca Pancratov; Felix Peng; Peter Smibert; Jr-Shiuan Yang; Emily Ruth Olson; Ciaran Guha-Gilford; Amol J. Kapoor; Feng-Xia Liang; Eric C. Lai; Maria Sol Flaherty; Ramanuj DasGupta

MicroRNAs (miRNAs) are regulators of global gene expression and function in a broad range of biological processes. Recent studies have suggested that miRNAs can function as tumor suppressors or oncogenes by modulating the activities of evolutionarily conserved signaling pathways that are commonly dysregulated in cancer. We report the identification of the miR-310 to miR-313 (miR-310/13) cluster as a novel antagonist of Wingless (Drosophila Wnt) pathway activity in a functional screen for Drosophila miRNAs. We demonstrate that miR-310/13 can modulate Armadillo (Arm; Drosophila β-catenin) expression and activity by directly targeting the 3′-UTRs of arm and pangolin (Drosophila TCF) in vivo. Notably, the miR-310/13-deficient flies exhibit abnormal germ and somatic cell differentiation in the male gonad, which can be rescued by reducing Arm protein levels or activity. Our results implicate a previously unrecognized function for miR-310/13 in dampening the activity of Arm in early somatic and germline progenitor cells, whereby inappropriate/sustained activation of Arm-mediated signaling or cell adhesion may impact normal differentiation in the Drosophila male gonad.


RNA | 2011

A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs

Peter Smibert; Fernando Bejarano; Dong Wang; Daniel L. Garaulet; Jr-Shiuan Yang; Raquel Martin; Diane Bortolamiol-Becet; Nicolas Robine; P. Robin Hiesinger; Eric C. Lai

Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of drosha mutants provided direct confirmation that mirtrons are independent of this nuclease, as inferred earlier from pasha knockouts. We further used these mutants to demonstrate in vivo cross-regulation of Drosha and Pasha in the intact animal, confirming remarkable conservation of a homeostatic mechanism that aligns their respective levels. Although the loss of core miRNA pathway components is universally lethal in animals, we unexpectedly recovered hypomorphic alleles that gave adult escapers with overtly normal development. However, the mutant photoreceptor neurons exhibited reduced synaptic transmission, without accompanying defects in neuronal development or maintenance. These findings indicate that synaptic function is especially sensitive to optimal miRNA pathway function. These allelic series of miRNA pathway mutants should find broad usage in studies of miRNA biogenesis and biology in the Drosophila system.


Current Topics in Developmental Biology | 2012

Exploiting Drosophila Genetics to Understand MicroRNA Function and Regulation

Qi Dai; Peter Smibert; Eric C. Lai

Although a great deal is known about the identity, biogenesis, and targeting capacity of microRNAs (miRNAs) in animal cells, far less is known about their functional requirements at the organismal level. Much remains to be understood about the necessity of miRNAs for overt phenotypes, the identity of critical miRNA targets, and the control of miRNA transcription. In this review, we provide an overview of genetic strategies to study miRNAs in the Drosophila system, including loss- and gain-of-function techniques, genetic interaction strategies, and transgenic reporters of miRNA expression and activity. As we illustrate the usage of these techniques in intact Drosophila, we see certain recurrent themes for miRNA functions, including energy homeostasis, apoptosis suppression, growth control, and regulation of core cell signaling pathways. Overall, we hope that this exposition of Drosophila genetic techniques, well known to the legions of fly geneticists and used to study all genes, can inform the general miRNA community that focuses on other biochemical, molecular, computational, and structural avenues. Clearly, it is the combination of these myriad techniques that has accelerated miRNA research to its extraordinary pace.

Collaboration


Dive into the Peter Smibert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marlon Stoeckius

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Swerdlow

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Achim A. Jungbluth

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge