Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Thielen is active.

Publication


Featured researches published by Peter Thielen.


Genes & Development | 2009

XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy

Claudio Hetz; Peter Thielen; Soledad Matus; Melissa Nassif; Felipe A. Court; Roberta Kiffin; Gabriela Martínez; Ana Maria Cuervo; Robert H. Brown; Laurie H. Glimcher

Mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS). Recent evidence implicates adaptive responses to endoplasmic reticulum (ER) stress in the disease process via a pathway known as the unfolded protein response (UPR). Here, we investigated the contribution to fALS of X-box-binding protein-1 (XBP-1), a key UPR transcription factor that regulates genes involved in protein folding and quality control. Despite expectations that XBP-1 deficiency would enhance the pathogenesis of mutant SOD1, we observed a dramatic decrease in its toxicity due to an enhanced clearance of mutant SOD1 aggregates by macroautophagy, a cellular pathway involved in lysosome-mediated protein degradation. To validate these observations in vivo, we generated mutant SOD1 transgenic mice with specific deletion of XBP-1 in the nervous system. XBP-1-deficient mice were more resistant to developing disease, correlating with increased levels of autophagy in motoneurons and reduced accumulation of mutant SOD1 aggregates in the spinal cord. Post-mortem spinal cord samples from patients with sporadic ALS and fALS displayed a marked activation of both the UPR and autophagy. Our results reveal a new function of XBP-1 in the control of autophagy and indicate critical cross-talk between these two signaling pathways that can provide protection against neurodegeneration.


Molecular Cell | 2009

BAX Inhibitor-1 Is a Negative Regulator of the ER Stress Sensor IRE1α

Fernanda Lisbona; Diego Rojas-Rivera; Peter Thielen; Sebastian Zamorano; Derrick J. Todd; Fabio Martinon; Alvaro Glavic; Christina L. Kress; Jonathan H. Lin; Peter Walter; John C. Reed; Laurie H. Glimcher; Claudio Hetz

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Bax inhibitor-1 (BI-1) is an evolutionarily conserved ER-resident protein that suppresses cell death. Here we have investigated the role of BI-1 in the UPR. BI-1 expression suppressed IRE1alpha activity in fly and mouse models of ER stress. BI-1-deficient cells displayed hyperactivation of the ER stress sensor IRE1alpha, leading to increased levels of its downstream target X-box-binding protein-1 (XBP-1) and upregulation of UPR target genes. This phenotype was associated with the formation of a stable protein complex between BI-1 and IRE1alpha, decreasing its ribonuclease activity. Finally, BI-1 deficiency increased the secretory activity of primary B cells, a phenomenon regulated by XBP-1. Our results suggest a role for BI-1 in early adaptive responses against ER stress that contrasts with its known downstream function in apoptosis.


Human Molecular Genetics | 2012

Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

René L. Vidal; Alicia Figueroa; Felipe A. Court; Peter Thielen; Claudia Molina; Craig Wirth; Benjamin Caballero; Roberta Kiffin; Juan Segura-Aguilar; Ana Maria Cuervo; Laurie H. Glimcher; Claudio Hetz

Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntingtons disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis

Claudio Hetz; Ann–Hwee Lee; Dennisse Gonzalez-Romero; Peter Thielen; Joaquín Castilla; Claudio Soto; Laurie H. Glimcher

The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1Nes−/−). XBP-1Nes−/− mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1Nes−/− primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1Nes−/− mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.


Current Molecular Medicine | 2008

The Stress Rheostat: An Interplay Between the Unfolded Protein Response (UPR) and Autophagy in Neurodegeneration

Soledad Matus; Fernanda Lisbona; Mauricio Torres; Cristian Leon; Peter Thielen; Claudio Hetz

The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under conditions of endoplasmic reticulum (ER) stress. The UPR controls diverse processes such as protein folding, secretion, ER biogenesis, protein quality control and macroautophagy. Occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation, including Amyotrophic lateral sclerosis, Prion-related disorders, and conditions such as Parkinsons, Huntingtons, and Alzheimers disease. Strong correlations are observed between disease progression, accumulation of protein aggregates, and induction of the UPR in animal and in vitro models of neurodegeneration. In addition, the first reports are available describing the engagement of ER stress responses in brain post-mortem samples from human patients. Despite such findings, the role of the UPR in the central nervous system has not been addressed directly and its contribution to neurodegeneration remains speculative. Recently, however, pharmacological manipulation of ER stress and autophagy - a stress pathway modulated by the UPR - using chemical chaperones and autophagy activators has shown therapeutic benefits by attenuating protein misfolding in models of neurodegenerative disease. The most recent evidence addressing the role of the UPR and ER stress in neurodegenerative disorders is reviewed here, along with therapeutic strategies to alleviate ER stress in a disease context.


Neuron | 2012

Differential Effects of Unfolded Protein Response Pathways on Axon Injury-Induced Death of Retinal Ganglion Cells

Yang Hu; Kevin Park; Liu Yang; Xin Wei; Qiang Yang; Kin-Sang Cho; Peter Thielen; Ann-Hwee Lee; Romain Cartoni; Laurie H. Glimcher; Dong Feng Chen; Zhigang He

Loss of retinal ganglion cells (RGCs) accounts for visual function deficits after optic nerve injury, but how axonal insults lead to neuronal death remains elusive. By using an optic nerve crush model that results in the death of the majority of RGCs, we demonstrate that axotomy induces differential activation of distinct pathways of the unfolded protein response in axotomized RGCs. Optic nerve injury provokes a sustained CCAAT/enhancer binding homologous protein (CHOP) upregulation, and deletion of CHOP promotes RGC survival. In contrast, IRE/XBP-1 is only transiently activated, and forced XBP-1 activation dramatically protects RGCs from axon injury-induced death. Importantly, such differential activations of CHOP and XBP-1 and their distinct effects on neuronal cell death are also observed in RGCs with other types of axonal insults, such as vincristine treatment and intraocular pressure elevation, suggesting a new protective strategy for neurodegeneration associated with axonal damage.


Cell Death & Differentiation | 2007

The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis.

Claudio Hetz; Peter Thielen; Jill K. Fisher; P Pasinelli; Robert H. Brown; Stanley J. Korsmeyer; Laurie H. Glimcher

The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis


Cell Reports | 2016

Regulation of Memory Formation by the Transcription Factor XBP1

Gabriela Martínez; René L. Vidal; Pablo Mardones; Felipe G. Serrano; Alvaro O. Ardiles; Craig Wirth; Pamela Valdés; Peter Thielen; Bernard L. Schneider; Bredford Kerr; José L. Valdés; Adrian G. Palacios; Nibaldo C. Inestrosa; Laurie H. Glimcher; Claudio Hetz

Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimers disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.


The Journal of Neuroscience | 2007

Diminishing apoptosis by deletion of Bax or overexpression of Bcl-2 does not protect against infectious prion toxicity in vivo.

Andrew D. Steele; Oliver D. King; Walker S. Jackson; Claudio Hetz; Andrew W. Borkowski; Peter Thielen; Robert L. Wollmann; Susan Lindquist

B-cell lymphoma protein 2 (Bcl-2) and Bcl-2-associated X protein (Bax), key antiapoptotic and proapoptotic proteins, respectively, have important roles in acute and chronic models of neurologic disease. Several studies have implicated Bax and Bcl-2 in mediating neurotoxicity in prion diseases. To determine whether diminishing apoptotic cell death is protective in an infectious prion disease model we inoculated mice that either were null for proapoptotic Bax or overexpressed antiapoptotic Bcl-2. Interestingly, genetic manipulation of apoptosis did not lessen the clinical severity of disease. Moreover, some disease parameters, such as behavioral alterations and death, occurred slightly earlier in mice that are null for Bax or overexpress Bcl-2. These results suggest that Bax and Bcl-2 mediated apoptotic pathways are not the major contributing factor to the clinical or pathological features of infectious prion disease.


Acta Neuropathologica | 2017

IRE1 signaling exacerbates Alzheimer's disease pathogenesis

Claudia Duran-Aniotz; Víctor Hugo Cornejo; Sandra Espinoza; Alvaro O. Ardiles; Danilo B. Medinas; Claudia Salazar; Andrew Foley; Ivana Gajardo; Peter Thielen; Takao Iwawaki; Wiep Scheper; Claudio Soto; Adrian G. Palacios; Jeroen J.M. Hoozemans; Claudio Hetz

Altered proteostasis is a salient feature of Alzheimer’s disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid β oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.

Collaboration


Dive into the Peter Thielen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Soto

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Dennisse Gonzalez-Romero

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Joaquín Castilla

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge