Peter Tsvetkov
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Tsvetkov.
Cell Death & Differentiation | 2010
Peter Tsvetkov; Nina Reuven; Yosef Shaul
The mechanism of p53 proteasomal degradation through polyubiquitination is well characterized. The basic assumption behind this mechanism is that p53 is inherently stable unless sensitized to degradation by polyubiquitination. However, a number of studies provide evidence for p53 to be naturally unstable. Consistent with this attribute is the fact that both p53 N- and C-termini are intrinsically unstructured. Recent findings provide evidence for p53 to be degraded by the 20S proteasome by default unless it escapes this process. A number of mechanisms were demonstrated and proposed to play a role in rescuing p53 from default degradation. These mechanisms, their biological implications, and relevance to cancer are reviewed in this article.
Journal of Biological Chemistry | 2007
Evan Elliott; Peter Tsvetkov; Irith Ginzburg
Intraneuronal accumulation of phosphorylated Tau protein is a molecular pathology found in many forms of dementia, including Alzheimer disease. Research into possible mechanisms leading to the accumulation of modified Tau protein and the possibility of removing Tau protein from the system have revealed that the chaperone protein system can interact with Tau and mediate its degradation. Hsp70/Hsc70, a member of the chaperone protein family, interacts with Tau protein and mediates proper folding of Tau and can promote degradation of Tau protein under certain circumstances. However, because Hsp70/Hsc70 has many binding partners that can mediate its activity, there is still much to discover about how Hsp70 acts in vivo to regulate Tau protein. BAG-1, an Hsp70/Hsc70 binding partner, has been implicated as a mediator of neuronal function. In this work we show that BAG-1 associates with Tau protein in an Hsc70-dependent manner. Overexpression of BAG-1 induced an increase in Tau levels, which is shown to be due to an inhibition of protein degradation. We further show that BAG-1 can inhibit the degradation of Tau protein by the 20 S proteasome but does not affect the ubiquitination of Tau protein. RNA-mediated interference depletion of BAG-1 leads to a decrease in total Tau protein levels as well as promoting hyperphosphorylation of the remaining protein. Induction of Hsp70 by heat shock enhanced the increase of Tau levels in cells overexpressing BAG-1 but induced a decrease of Tau levels in cells that were depleted of BAG-1. Finally, BAG-1 is highly expressed in neurons bearing Tau tangles in a mouse model of Alzheimer disease. This data suggests a molecular mechanism through which Tau protein levels are regulated in the cell and possible consequences for the pathology and treatment of Alzheimer disease.
Proteins | 2007
Peter Tsvetkov; Gad Asher; Aviv Paz; Nina Reuven; Joel L. Sussman; Israel Silman; Yosef Shaul
Intrinsically unstructured proteins (IUPs), also known as natively unfolded proteins, lack well‐defined secondary and tertiary structure under physiological conditions. In recent years, growing experimental and theoretical evidence has accumulated, indicating that many entire proteins and protein sequences are unstructured under physiological conditions, and that they play significant roles in diverse cellular processes. Bioinformatic algorithms have been developed to identify such sequences in proteins for which structural data are lacking, but still generate substantial numbers of false positives and negatives. We describe here a simple and reliable in vitro assay for identifying IUP sequences based on their susceptibility to 20S proteasomal degradation. We show that 20S proteasomes digest IUP sequences, under conditions in which native, and even molten globule states, are resistant. Furthermore, we show that protein–protein interactions can protect IUPs against 20S proteasomal action. Taken together, our results thus suggest that the 20S proteasome degradation assay provides a powerful system for operational definition of IUPs. Proteins 2008.
Journal of Cell Science | 2011
Ceri M. Wiggins; Peter Tsvetkov; Mark Johnson; Claire L. Joyce; Christopher A. Lamb; Nia J. Bryant; David Komander; Yosef Shaul; Simon J. Cook
BIM-extra long (BIMEL), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIMEL in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIMEL undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIMELΔKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIMEL is degraded by isolated 20S proteasomes but that this is prevented when BIMEL is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIMEL turnover in cells, and inhibition of the E3 ubiquitin ligase β-TrCP, which catalyses poly-Ub of BIMEL, causes Cdc25A accumulation but does not inhibit BIMEL turnover. These results provide new insights into the regulation of BIMEL by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.
Journal of Biological Chemistry | 2009
Peter Tsvetkov; Nina Reuven; Carol Prives; Yosef Shaul
The N-terminal transcription activation domain of p53 is intrinsically unstructured. We show in vitro and in vivo that this domain initiates p53 degradation by the 20 S proteasome in a ubiquitin-independent fashion. The decay of metabolically labeled p53 follows biphasic kinetics with an immediate fast phase that is ubiquitin-independent and a second slower phase that is ubiquitin-dependent. The 20 S proteasome executes the first phase by default, whereas the second phase requires the 26 S proteasome. p53 N-terminal binding proteins, such as Hdmx, can selectively block the first phase of degradation. Remarkably, γ-irradiation inhibits both p53 decay phases, whereas UV selectively negates the second phase, giving rise to discrete levels of p53 accumulation. Our data of a single protein experiencing double mode degradation mechanisms each with unique kinetics provide the mechanistic basis for programmable protein homeostasis (proteostasis).
Proceedings of the National Academy of Sciences of the United States of America | 2003
Gad Asher; Joseph Lotem; Peter Tsvetkov; Veronica Reiss; Leo Sachs; Yosef Shaul
Proteasomal degradation of p53 is mediated by two alternative pathways that are either dependent or independent of both Mdm2 and ubiquitin. The ubiquitin-independent pathway is regulated by NAD(P)H: quinone oxidoreductase 1 (NQO1) that stabilizes p53. The NQO1 inhibitor dicoumarol induces ubiquitin-independent p53 degradation. We now show that, like dicoumarol, several other coumarin and flavone inhibitors of NQO1 activity, which compete with NAD(P)H for binding to NQO1, induced ubiquitin-independent p53 degradation and inhibited wild-type p53-mediated apoptosis. Although wild-type p53 and several p53 mutants were sensitive to dicoumarol-induced degradation, the most frequent “hot-spot” p53 mutants in human cancer, R175H, R248H, and R273H, were resistant to dicoumarol-induced degradation, but remained sensitive to Mdm2-ubiquitin-mediated degradation. The two alternative pathways for p53 degradation thus have different p53 structural requirements. Further mutational analysis showed that arginines at positions 175 and 248 were essential for dicoumarol-induced p53 degradation. NQO1 bound to wild-type p53 and dicoumarol, which induced a conformational change in NQO1, inhibited this binding. Compared with wild-type p53, the hot-spot p53 mutants showed increased binding to NQO1, which can explain their resistance to dicoumarol-induced degradation. NQO1 thus has an important role in stabilizing hot-spot p53 mutant proteins in human cancer.
Molecular Cell | 2012
Oren Moscovitz; Peter Tsvetkov; Nimrod Hazan; Izhak Michaelevski; Hodaya Keisar; Gili Ben-Nissan; Yosef Shaul; Michal Sharon
NAD(P)H:quinone-oxidoreductase-1 (NQO1) is a cytosolic enzyme that catalyzes the reduction of various quinones using flavin adenine dinucleotide (FAD) as a cofactor. NQO1 has been also shown to rescue proteins containing intrinsically unstructured domains, such as p53 and p73, from degradation by the 20S proteasome through an unknown mechanism. Here, we studied the nature of interaction between NQO1 and the 20S proteasome. Our study revealed a double negative feedback loop between NQO1 and the 20S proteasome, whereby NQO1 prevents the proteolytic activity of the 20S proteasome and the 20S proteasome degrades the apo form of NQO1. Furthermore, we demonstrate, both in vivo and in vitro, that NQO1 levels are highly dependent on FAD concentration. These observations suggest a link between 20S proteolysis and the metabolic cellular state. More generally, the results may represent a regulatory mechanism by which associated cofactors dictate the stability of proteins, thus coordinating protein levels with the metabolic status.
Molecular and Cellular Biology | 2013
Yaarit Adamovich; Amir Shlomai; Peter Tsvetkov; Kfir Baruch Umansky; Nina Reuven; Jennifer L. Estall; Bruce M. Spiegelman; Yosef Shaul
ABSTRACT PGC-1α is a key transcription coactivator regulating energy metabolism in a tissue-specific manner. PGC-1α expression is tightly regulated, it is a highly labile protein, and it interacts with various proteins—the known attributes of intrinsically disordered proteins (IDPs). In this study, we characterize PGC-1α as an IDP and demonstrate that it is susceptible to 20S proteasomal degradation by default. We further demonstrate that PGC-1α degradation is inhibited by NQO1, a 20S gatekeeper protein. NQO1 binds and protects PGC-1α from degradation in an NADH-dependent manner. Using different cellular physiological settings, we also demonstrate that NQO1-mediated PGC-1α protection plays an important role in controlling both basal and physiologically induced PGC-1α protein level and activity. Our findings link NQO1, a cellular redox sensor, to the metabolite-sensing network that tunes PGC-1α expression and activity in regulating energy metabolism.
Journal of Biological Chemistry | 2011
Peter Tsvetkov; Yaarit Adamovich; Evan Elliott; Yosef Shaul
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoenzyme that is important in maintaining the cellular redox state and regulating protein degradation. The NQO1 polymorphism C609T has been associated with increased susceptibility to various age-related pathologies. We show here that NQO1 protein level is regulated by the E3 ligase STUB1/CHIP (C terminus of Hsc70-interacting protein). NQO1 binds STUB1 via the Hsc70-interacting domain (tetratricopeptide repeat domain) and undergoes ubiquitination and degradation. We demonstrate here that the product of the C609T polymorphism (P187S) is a stronger STUB1 interactor with increased susceptibility to ubiquitination by the E3 ligase STUB1. Furthermore, age-dependent decrease of STUB1 correlates with increased NQO1 accumulation. Remarkably, examination of hippocampi from Alzheimer disease patients revealed that in half of the cases examined the NQO1 protein level was undetectable due to C609T polymorphism, suggesting that the age-dependent accumulation of NQO1 is impaired in certain Alzheimer disease patients.
Journal of Biological Chemistry | 2014
Peter Tsvetkov; Nadav Myers; Raz Eliav; Yaarit Adamovich; Tzachi Hagai; Julia Adler; Ami Navon; Yosef Shaul
Background: 26S proteasome complex is highly dependent on ATP. Results: NADH binds the proteasome via the Psmc1 subunit resulting in ATP-independent stabilization of the 26S proteasome complex, in vitro and in cells. Conclusion: NADH is a novel regulator of the 26S proteasome. Significance: NADH can maintain proteasomal integrity in the absence of ATP, linking cellular redox state to protein degradation. The 26S proteasome is the end point of the ubiquitin- and ATP-dependent degradation pathway. The 26S proteasome complex (26S PC) integrity and function has been shown to be highly dependent on ATP and its homolog nucleotides. We report here that the redox molecule NADH binds the 26S PC and is sufficient in maintaining 26S PC integrity even in the absence of ATP. Five of the 19S proteasome complex subunits contain a putative NADH binding motif (GxGxxG) including the AAA-ATPase subunit, Psmc1 (Rpt2). We demonstrate that recombinant Psmc1 binds NADH via the GxGxxG motif. Introducing the ΔGxGxxG Psmc1 mutant into cells results in reduced NADH-stabilized 26S proteasomes and decreased viability following redox stress induced by the mitochondrial inhibitor rotenone. The newly identified NADH binding of 26S proteasomes advances our understanding of the molecular mechanisms of protein degradation and highlights a new link between protein homeostasis and the cellular metabolic/redox state.