Pham Quang Thai
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pham Quang Thai.
PLOS ONE | 2011
Peter Horby; Pham Quang Thai; Niel Hens; Nguyen Thi Thu Yen; Le Quynh Mai; Dang Dinh Thoang; Nguyen Manh Linh; Nguyen Thu Huong; Neal Alexander; W. John Edmunds; Tran Nhu Duong; Annette Fox; Nguyen Tran Hien
Background The spread of infectious diseases from person to person is determined by the frequency and nature of contacts between infected and susceptible members of the population. Although there is a long history of using mathematical models to understand these transmission dynamics, there are still remarkably little empirical data on contact behaviors with which to parameterize these models. Even starker is the almost complete absence of data from developing countries. We sought to address this knowledge gap by conducting a household based social contact diary in rural Vietnam. Methods and Findings A diary based survey of social contact patterns was conducted in a household-structured community cohort in North Vietnam in 2007. We used generalized estimating equations to model the number of contacts while taking into account the household sampling design, and used weighting to balance the household size and age distribution towards the Vietnamese population. We recorded 6675 contacts from 865 participants in 264 different households and found that mixing patterns were assortative by age but were more homogenous than observed in a recent European study. We also observed that physical contacts were more concentrated in the home setting in Vietnam than in Europe but the overall level of physical contact was lower. A model of individual versus household vaccination strategies revealed no difference between strategies in the impact on R 0. Conclusions and Significance This work is the first to estimate contact patterns relevant to the spread of infections transmitted from person to person by non-sexual routes in a developing country setting. The results show interesting similarities and differences from European data and demonstrate the importance of context specific data.
American Journal of Epidemiology | 2012
Peter Horby; Le Quynh Mai; Annette Fox; Pham Quang Thai; Nguyen Thi Thu Yen; Le Thi Thanh; Nguyen Le Khanh Hang; Tran Nhu Duong; Dang Dinh Thoang; Jeremy Farrar; Marcel Wolbers; Nguyen Tran Hien
Prospective community-based studies have provided fundamental insights into the epidemiology of influenza in temperate regions, but few comparable studies have been undertaken in the tropics. The authors conducted prospective influenza surveillance and intermittent seroprevalence surveys in a household-based cohort in Vietnam between December 2007 and April 2010, resulting in 1,793 person-seasons of influenza surveillance. Age- and sex-standardized estimates of the risk of acquiring any influenza infection per season in persons 5 years of age or older were 21.1% (95% confidence interval: 17.4, 24.7) in season 1, 26.4% (95% confidence interval: 22.6, 30.2) in season 2, and 17.0% (95% confidence interval: 13.6, 20.4) in season 3. Some individuals experienced multiple episodes of infection with different influenza types/subtypes in the same season (n = 27) or reinfection with the same subtype in different seasons (n = 22). The highest risk of influenza infection was in persons 5–9 years old, in whom the risk of influenza infection per season was 41.8%. Although the highest infection risk was in school-aged children, there were important heterogeneities in the age of infection by subtype and season. These heterogeneities could influence the impact of school closure and childhood vaccination on influenza transmission in tropical areas, such as Vietnam.
PLOS Pathogens | 2012
Simon Cauchemez; Peter Horby; Annette Fox; Le Quynh Mai; Le Thi Thanh; Pham Quang Thai; Le Nguyen Minh Hoa; Nguyen Tran Hien; Neil M. Ferguson
Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.
Epidemiology and Infection | 2010
Peter Horby; H. Sudoyo; Vip Viprakasit; Annette Fox; Pham Quang Thai; Hyeong Gon Yu; Sonia Davila; Martin L. Hibberd; Sarah J. Dunstan; Yuwarat Monteerarat; Jeremy Farrar; Sangkot Marzuki; Nguyen Tran Hien
The apparent family clustering of avian influenza A/H5N1 has led several groups to postulate the existence of a host genetic influence on susceptibility to A/H5N1, yet the role of host factors on the risk of A/H5N1 disease has received remarkably little attention compared to the efforts focused on viral factors. We examined the epidemiological patterns of human A/H5N1 cases, their possible explanations, and the plausibility of a host genetic effect on susceptibility to A/H5N1 infection. The preponderance of familial clustering of cases and the relative lack of non-familial clusters, the occurrence of related cases separated by time and place, and the paucity of cases in some highly exposed groups such as poultry cullers, are consistent with a host genetic effect. Animal models support the biological plausibility of genetic susceptibility to A/H5N1. Although the evidence is circumstantial, host genetic factors are a parsimonious explanation for the unusual epidemiology of human A/H5N1 cases and warrant further investigation.
BMC Medicine | 2009
Maciej F. Boni; Bui Huu Manh; Pham Quang Thai; Jeremy Farrar; Tran Tinh Hien; Nguyen Tran Hien; Nguyen Van Kinh; Peter Horby
BackgroundA novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic.MethodsWe developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans.ResultsIn the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnams provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenzas basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M).ConclusionIt is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Willem G. van Panhuis; Marc Choisy; Xin Xiong; Nian Shong Chok; Pasakorn Akarasewi; Sopon Iamsirithaworn; Sai K. Lam; Chee K. Chong; Fook C. Lam; Bounlay Phommasak; Phengta Vongphrachanh; Khamphaphongphane Bouaphanh; Huy Rekol; Nguyen Tran Hien; Pham Quang Thai; Tran Nhu Duong; Jen Hsiang Chuang; Yu Lun Liu; Lee Ching Ng; Yuan Shi; Enrique A. Tayag; Vito G. Roque; Lyndon L Lee Suy; Richard G. Jarman; Robert V. Gibbons; John Mark Velasco; In Kyu Yoon; Donald S. Burke; Derek A. T. Cummings
Significance Persons living in the tropics and subtropics are at risk for dengue fever and dengue hemorrhagic fever, and large epidemics occur unexpectedly that can overburden healthcare systems. The spatial and temporal dynamics of dengue transmission are poorly understood, limiting disease control efforts. We compiled a large-scale dataset and analyzed continental-scale patterns of dengue in Southeast Asia. Our analysis shows that periods of elevated temperatures can drive the occurrence of synchronous dengue epidemics across the region. This multicountry collaborative study improved insight that may lead to improved prediction of dengue transmission patterns and more effective disease surveillance and control efforts. Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼107 km2. We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997–1998, which was followed by a period of extremely low incidence in 2001–2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997–1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2–5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.
The Journal of Infectious Diseases | 2012
Timothy J. Powell; Annette Fox; Yanchun Peng; Le Thi Quynh Mai; Vu Thi Kim Lien; Nguyen Le Khanh Hang; L. Wang; Laurel Yong-Hwa Lee; Cameron P. Simmons; Andrew J. McMichael; Jeremy Farrar; Brigitte A. Askonas; Tran Nhu Duong; Pham Quang Thai; Nguyen Thi Thu Yen; Sarah Rowland-Jones; Nguyen Tran Hien; Peter Horby; Tao Dong
BACKGROUND Most reported human H5N1 viral infections have been severe and were detected after hospital admission. A case ascertainment bias may therefore exist, with mild cases or asymptomatic infections going undetected. We sought evidence of mild or asymptomatic H5N1 infection by examining H5N1-specific T-cell and antibody responses in a high-risk cohort in Vietnam. METHODS Peripheral blood mononuclear cells were tested using interferon-γ enzyme-linked immunospot T assays measuring the response to peptides of influenza H5, H3, and H1 hemagglutinin (HA), N1 and N2 neuraminidase, and the internal proteins of H3N2. Horse erythrocyte hemagglutination inhibition assay was performed to detect antibodies against H5N1. RESULTS Twenty-four of 747 individuals demonstrated H5-specific T-cell responses but little or no cross-reactivity with H3 or H1 HA peptides. H5N1 peptide-specific T-cell lines that did not cross-react with H1 or H3 influenza virus HA peptides were generated. Four individuals also had antibodies against H5N1. CONCLUSIONS This is the first report of ex vivo H5 HA-specific T-cell responses in a healthy but H5N1-exposed population. Our results indicate that the presence of H5N1-specific T cells could be an additional diagnostic tool for asymptomatic H5N1 infection.
Journal of Infection | 2015
Annette Fox; Le Quynh Mai; Le Thi Thanh; Marcel Wolbers; Nguyen Le Khanh Hang; Pham Quang Thai; Nguyen Thi Thu Yen; Le Nguyen Minh Hoa; Juliet E. Bryant; Tran Nhu Duong; Dang Dinh Thoang; Ian G. Barr; Heiman Wertheim; Jeremy Farrar; Nguyen Tran Hien; Peter Horby
Summary Objectives Hemagglutination inhibiting (HI) antibodies correlate with influenza vaccine protection but their association with protection induced by natural infection has received less attention and was studied here. Methods 940 people from 270 unvaccinated households participated in active ILI surveillance spanning 3 influenza seasons. At least 494 provided paired blood samples spanning each season. Influenza infection was confirmed by RT-PCR on nose/throat swabs or serum HI assay conversion. Results Pre-season homologous HI titer was associated with a significantly reduced risk of infection for H3N2 (OR 0.61, 95%CI 0.44–0.84) and B (0.65, 95%CI 0.54–0.80) strains, but not H1N1 strains, whether re-circulated (OR 0.90, 95%CI 0.71–1.15), new seasonal (OR 0.86, 95%CI 0.54–1.36) or pandemic H1N1-2009 (OR 0.77, 95%CI 0.40–1.49). The risk of seasonal and pandemic H1N1 decreased with increasing age (both p < 0.0001), and the risk of pandemic H1N1 decreased with prior seasonal H1N1 (OR 0.23, 95%CI 0.08–0.62) without inducing measurable A/California/04/2009-like titers. Conclusions While H1N1 immunity was apparent with increasing age and prior infection, the effect of pre-season HI titer was at best small, and weak for H1N1 compared to H3N2 and B. Antibodies targeting non-HI epitopes may have been more important mediators of infection-neutralizing immunity for H1N1 compared to other subtypes in this setting.
Journal of Infection | 2014
Pham Quang Thai; Le Quynh Mai; Matthijs R.A. Welkers; Nguyen Le Khanh Hang; Le Thi Thanh; Vu Tien Viet Dung; Nguyen Thi Thu Yen; Tran Nhu Duong; Le Nguyen Minh Hoa; Dang Dinh Thoang; Hoang Thi Huyen Trang; Menno D. de Jong; Heiman Wertheim; Nguyen Tran Hien; Peter Horby; Annette Fox
Summary Objectives Influenza household transmission studies are required to guide prevention strategies but most passively recruit index cases that seek healthcare. We investigated A(H1N1)pdm09 transmission in a household-based cohort during 2009. Methods Health-workers visited 270 households weekly, and collected swabs from influenza-like-illness cases. If A(H1N1)pdm09 was RT-PCR-confirmed, all household members had symptoms assessed and swabs collected daily for 10–15 days. Viral RNA was quantified and sequenced and serology performed on pre-pandemic sera. Results Index cases were detected in 20 households containing 81 people. 98.5% lacked A(H1N1)pdm09 neutralizing antibodies in pre-pandemic sera. Eleven (18.6%, 95% CI 10.7–30.4%) of 59 contacts were infected. Virus genetic diversity within households was negligible and less than between households. Index and secondary cases were distributed between mothers, daughters and sons, and had similar virus-RNA shedding and symptom dynamics. Fathers were rarely infected. Five secondary cases (45%) had no apparent symptoms and three shed virus before symptoms. Secondary infection was associated with index case wet cough (OR 1.56, 95% CI 1.22–1.99). Conclusions In this cohort of A(H1N1)pdm09 susceptible persons, virus sequencing was capable of discriminating household from community transmission. Household transmission involved mothers and children but rarely fathers. Asymptomatic or pre-symptomatic shedding was common.
Epidemics | 2015
Pham Quang Thai; Marc Choisy; Tran Nhu Duong; Vu Dinh Thiem; Nguyen Thi Thu Yen; Nguyen Tran Hien; Daniel J. Weiss; Maciej F. Boni; Peter Horby
BACKGROUND Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. METHODS We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. RESULTS The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power <17.6), whereas ILI seasonality is strongest in provinces with pronounced AH seasonality (power >17.6). In Vietnam, AH and ILI are positively correlated. CONCLUSIONS Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings.