Philippe Jarne
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Jarne.
Trends in Ecology and Evolution | 1996
Philippe Jarne; Pierre J.L. Lagoda
Population genetics studies using microsatellites, and data on their molecular dynamics, are on the increase. But, so far, no consensus has emerged on which mutation model should be used, though this is of paramount importance for analysis of population genetic structure. However, this is not surprising given the variety of microsatellite molecular motifs. Null alleles may be disturbing for population studies, even though their presence can be detected through careful population analyses, while homoplasy seems of little concern, at least over short evolutionary scales. Interspecific studies show that microsatellites are poor markers for phylogenetic inference. However, these studies are fuelling discussions on directional mutation and the role of selection and recombination in their evolution. Nonetheless, it remains true that microsatellites may be considered as good, neutral mendelian markers.
Molecular Ecology | 2002
Arnaud Estoup; Philippe Jarne; Jean-Marie Cornuet
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
Evolution | 2006
Philippe Jarne; Josh R. Auld
Abstract Excluding insects, hermaphroditism occurs in about one-third of animal species, providing numerous opportunities for the evolution of selfing. Here we provide an overview of reproductive traits in hermaphroditic animal species, review the distribution of selfing rates in animals, and test for ecological correlates of selfing. Our dataset (1342 selfing-rate estimates for 142 species) is 97% based on estimates derived from the analysis of population structure (FIS-estimates) using genetic markers. The distribution of selfing is slightly 𝗨-shaped and differs significantly from the more strongly 𝗨-shaped plant distribution with 47% of animal t-estimates being intermediate (falling between 0.2 and 0.8) compared to 42% for plants. The influence of several factors on the distribution of selfing rates was explored (e.g., number of populations studied per species, habitat, coloniality, sessility, or fertilization type), none of which significantly affect the distribution. Our results suggest that genetic forces might contribute to the evolution of self-fertilization to the same extent in animals and plants, although the high proportion of intermediate outcrossing suggests a significant role of ecological factors (e.g., reproductive assurance) in animals. However, we caution that the distribution of selfing rates in animals is affected by various factors that might bias FIS-estimates, including phylogenetic underrepresentation of highly selfing and outcrossing species, various genotyping errors (e.g., null alleles) and inbreeding depression. This highlights the necessity of obtaining better estimates of selfing for hermaphroditic animals, such as genotyping progeny arrays, as in plants.
Current Biology | 2008
Benoit Facon; Jean-Pierre Pointier; Philippe Jarne; Violette Sarda; Patrice David
Biological invasions represent major threats to biodiversity as well as large-scale evolutionary experiments. Invasive populations have provided some of the best known examples of contemporary evolution [3-6], challenging the classical view that invasive species are genetically depauperate because of founder effects. Yet the origin of trait genetic variance in invasive populations largely remains a mystery, precluding a clear understanding of how evolution proceeds. In particular, despite the emerging molecular evidence that multiple introductions commonly occur in the same place, their contribution to the evolutionary potential of invasives remains unclear. Here, by using a long-term field survey, mtDNA sequences, and a large-scale quantitative genetic experiment on freshwater snails, we document how a spectacular adaptive potential for key ecological traits can be accumulated in invasive populations. We provide the first direct evidence that multiple introductions are primarily responsible for such an accumulation and that sexual reproduction amplifies this effect by generating novel trait combinations. Thus bioinvasions, destructive as they may be, are not synonyms of genetic uniformity and can be hotspots of evolutionary novelty.
The American Naturalist | 2000
Mark Kirkpatrick; Philippe Jarne
We study the effects of a population bottleneck on the inbreeding depression and genetic load caused by deleterious mutations in an outcrossing population. The calculations assume that loci have multiplicative fitness effects and that linkage disequilibrium is negligible. Inbreeding depression decreases immediately after a sudden reduction of population size, but the drop is at most only several percentage points, even for severe bottlenecks. Highly recessive mutations experience a purging process that causes inbreeding depression to decline for a number of additional generations. On the basis of available parameter estimates, the absolute fall in inbreeding depression may often be only a few percentage points for bottlenecks of 10 or more individuals. With a very high lethal mutation rate and a very slow population growth, however, the decline may be on the order of 25%. We examine when purging might favor a switch from outbreeding to selfing and find it occurs only under very limited conditions unless population growth is very slow. In contrast to inbreeding depression, a bottleneck causes an immediate increase in the genetic load. Purging causes the load to decline and then overshoot its equilibrium value. The changes are typically modest: the absolute increase in the total genetic load will be at most a few percentage points for bottlenecks of size 10 or more unless the lethal mutation rate is very high and the population growth rate very slow.
Journal of Evolutionary Biology | 2005
Benoı̂t Facon; Philippe Jarne; Jean-Pierre Pointier; Patrice David
Many invasive taxa are hybrids, but how hybridization boosts the invasive process remains poorly known. We address this question in the clonal freshwater snail Melanoides tuberculata from Martinique, using three parental and two hybrid lines. We combine an extensive field survey (1990–2003) and a quantitative genetic experiment to show that hybrid lines have outcompeted their parents in natural habitats, and that this increased invasiveness co‐occurred with pronounced shifts in life‐history traits, such as growth, fecundity and juvenile size. Given the little time between hybrid creation and sampling, and the moderate standing genetic variance for life‐history traits in hybrids, we show that some of the observed trait changes between parents and hybrids were unlikely to arise only by continuous selection. We therefore suggest that a large part of hybrid advantage stems from immediate heterosis upon hybridization.
Evolution | 2005
Franck Prugnolle; André Théron; Jean Pierre Pointier; Roula Jabbour-Zahab; Philippe Jarne; Patrick Durand; Thierry De Meeûs
Abstract Characterizing host and parasite population genetic structure and estimating gene flow among populations is essential for understanding coevolutionary interactions between hosts and parasites. We examined the population genetic structure of the trematode Schistosoma mansoni and its two host species (the definitive host Rattus rattus and the intermediate host Biomphalaria glabrata) using microsatellite markers. Parasites were sampled from rats. The study was conducted in five sites of the Guadeloupe Island, Lesser Antilles. Mollusks display a pattern of isolation by distance whereas such a pattern is not found neither in schistosomes nor in rats. The comparison of the distribution of genetic variability in S. mansoni and its two host species strongly suggests that migration of parasites is principally determined by that of the vertebrate host in the marshy focus of Guadeloupe. However, the comparison between genetic differentiation values in schistosomes and rats suggests that the efficacy of the schistosome rat‐mediated dispersal between transmission sites is lower than expected given the prevalence, parasitic load and migration rate of rats among sites. This could notably suggest that rat migration rate could be negatively correlated to the age or the infection status of individuals. Models made about the evolution of local adaptation in function of the dispersal rates of hosts and parasites suggest that rats and mollusks should be locally adapted to their parasites.
Journal of Molecular Evolution | 1998
Frédérique Viard; Pierre Franck; Marie-Pierre Dubois; Arnaud Estoup; Philippe Jarne
Abstract. Size homoplasy was analyzed at microsatellite loci by sequencing electromorphs, that is, variants of the same size (base pairs). This study was conducted using five interrupted and/or compound loci in three invertebrate species, the honey bee Apis mellifera, the bumble bee Bombus terrestris, and the freshwater snail Bulinus truncatus. The 15 electromorphs sequenced turned out to hide 31 alleles (i.e., variants identical in sequence). Variation in the amount of size homoplasy was detected among electromorphs and loci. From one to seven alleles were detected per electromorph, and one locus did not show any size homoplasy in both bee species. The amount of size homoplasy was related to the sequencing effort, since the number of alleles was correlated with the number of copies of electromorphs sequenced, but also with the molecular structure of the core sequence at each locus. Size homoplasy within populations was detected only three times, meaning that size homoplasy was detected mostly among populations. We analyzed population structure, estimating Fst and a genetic distance, based on either electromorphs or alleles. Whereas little difference was found in A. mellifera, uncovering size homoplasy led to a more marked population structure in B. terrestris and B. truncatus. We also showed in A. mellifera that the detection of size homoplasy may alter phylogenetic reconstructions.
Molecular Ecology | 2003
B. Facon; Jean-Pierre Pointier; Matthias Glaubrecht; C. Poux; Philippe Jarne; Patrice David
The parthenogenetic snail Melanoides tuberculata, present in tropical fresh waters of most of the Old World before 1950, has now invaded the Neotropical area. The phylogeography of this snail was studied to evaluate the pathways and number of such invasions. Because of parthenogenetic reproduction, individuals are structured into genetical clones. Within populations from both the original and invaded areas, several morphologically distinct clones (referred to as morphs) often coexist but the amount of genetic divergence among morphs is unknown. Individuals from 27 morphs and 40 populations world‐wide were sequenced at two mitochondrial genes (12S and 16S). Our phylogenetic reconstruction suggests that (i) most of the morphological variation observed in the New World predates invasion, (ii) at least six independent introductions have occurred, and (iii) invasive clones are found throughout most of the phylogenetic tree and do not come from a particular region of the area of origin. Two ideas are discussed in the light of these results. The first lies with the specificities of parthenogenesis in an invasion context. While in sexual species, independently introduced populations eventually merge into a single invasive population, in a parthenogenetic species independently introduced clones have distinct invasion dynamics and possibly exclude each other. Second, although repeated invasions in Melanoides may have an impact on indigenous molluscan faunas, their most likely effect is the world‐wide homogenization of the invasive taxon itself.
Molecular Ecology | 2005
J. A. T. Morgan; Randall J. DeJong; Grace O. Adeoye; Ebenezer D. O. Ansa; Constança Simões Barbosa; Philippe Brémond; Italo M. Cesari; Nathalie Charbonnel; Lygia R. Corrêa; Godefroy Coulibaly; Paulo Sergio D’Andrea; Cecília Pereira de Souza; Michael J. Doenhoff; Sharon File; Mohamed A. Idris; R. Nino Incani; Philippe Jarne; Diana M. S. Karanja; Francis Kazibwe; John Kpikpi; Nicholas J.S. Lwambo; Amadou Mabaye; Luiz Augusto Magalhães; Asanteli Makundi; Hélène Moné; Gabriel Mouahid; Gerald Muchemi; Ben N. Mungai; Mariama Séne; Vaughan Southgate
Schistosoma mansoni is the most widespread of the human‐infecting schistosomes, present in 54 countries, predominantly in Africa, but also in Madagascar, the Arabian Peninsula, and the Neotropics. Adult‐stage parasites that infect humans are also occasionally recovered from baboons, rodents, and other mammals. Larval stages of the parasite are dependent upon certain species of freshwater snails in the genus Biomphalaria, which largely determine the parasites geographical range. How S. mansoni genetic diversity is distributed geographically and among isolates using different hosts has never been examined with DNA sequence data. Here we describe the global phylogeography of S. mansoni using more than 2500 bp of mitochondrial DNA (mtDNA) from 143 parasites collected in 53 geographically widespread localities. Considerable within‐species mtDNA diversity was found, with 85 unique haplotypes grouping into five distinct lineages. Geographical separation, and not host use, appears to be the most important factor in the diversification of the parasite. East African specimens showed a remarkable amount of variation, comprising three clades and basal members of a fourth, strongly suggesting an East African origin for the parasite 0.30–0.43 million years ago, a time frame that follows the arrival of its snail host. Less but still substantial variation was found in the rest of Africa. A recent colonization of the New World is supported by finding only seven closely related New World haplotypes which have West African affinities. All Brazilian isolates have nearly identical mtDNA haplotypes, suggesting a founder effect from the establishment and spread of the parasite in this large country.