Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Laporte is active.

Publication


Featured researches published by Philippe Laporte.


Genome Research | 2008

Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

Besma Ben Amor; Sonia Wirth; Francisco Merchan; Philippe Laporte; Yves d’Aubenton-Carafa; Judith Hirsch; Alexis Maizel; Allison C. Mallory; Antoine Lucas; Jean Marc Deragon; Hervé Vaucheret; Claude Thermes; Martin Crespi

Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.


Plant Journal | 2008

MicroRNA166 controls root and nodule development in Medicago truncatula

Adnane Boualem; Philippe Laporte; Mariana Jovanovic; Carole Laffont; Julie Plet; Jean-Philippe Combier; Andreas Niebel; Martin Crespi; Florian Frugier

Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.


PLOS ONE | 2010

Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches

Nicolas Maunoury; Miguel Redondo-Nieto; Marie Bourcy; Willem Van de Velde; Benoît Alunni; Philippe Laporte; Patricia Durand; Nicolas Agier; Laetitia Marisa; Danièle Vaubert; Hervé Delacroix; Gérard Duc; Pascal Ratet; Lawrence P. Aggerbeck; Eva Kondorosi; Peter Mergaert

The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.


The Plant Cell | 2009

A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress

Laura de Lorenzo; Francisco Merchan; Philippe Laporte; Richard Thompson; Jonathan Clarke; Carolina Sousa; Martin Crespi

In plants, a diverse group of cell surface receptor-like protein kinases (RLKs) plays a fundamental role in sensing external signals to regulate gene expression. Roots explore the soil environment to optimize their growth via complex signaling cascades, mainly analyzed in Arabidopsis thaliana. However, legume roots have significant physiological differences, notably their capacity to establish symbiotic interactions. These major agricultural crops are affected by environmental stresses such as salinity. Here, we report the identification of a leucine-rich repeat RLK gene, Srlk, from the legume Medicago truncatula. Srlk is rapidly induced by salt stress in roots, and RNA interference (RNAi) assays specifically targeting Srlk yielded transgenic roots whose growth was less inhibited by the presence of salt in the medium. Promoter-β-glucuronidase fusions indicate that this gene is expressed in epidermal root tissues in response to salt stress. Two Srlk-TILLING mutants also failed to limit root growth in response to salt stress and accumulated fewer sodium ions than controls. Furthermore, early salt-regulated genes are downregulated in Srlk-RNAi roots and in the TILLING mutant lines when submitted to salt stress. We propose a role for Srlk in the regulation of the adaptation of M. truncatula roots to salt stress.


Developmental Cell | 2014

Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis

Florian Bardou; Federico Ariel; Craig G. Simpson; Natali Romero-Barrios; Philippe Laporte; Sandrine Balzergue; John W. S. Brown; Martin Crespi

Alternative splicing (AS) of pre-mRNA represents a major mechanism underlying increased transcriptome and proteome complexity. Here, we show that the nuclear speckle RNA-binding protein (NSR) and the AS competitor long noncoding RNA (or ASCO-lncRNA) constitute an AS regulatory module. AtNSR-GFP translational fusions are expressed in primary and lateral root (LR) meristems. Double Atnsr mutants and ASCO overexpressors exhibit an altered ability to form LRs after auxin treatment. Interestingly, auxin induces a major change in AS patterns of many genes, a response largely dependent on NSRs. RNA immunoprecipitation assays demonstrate that AtNSRs interact not only with their alternatively spliced mRNA targets but also with the ASCO-RNA in vivo. The ASCO-RNA displaces an AS target from an NSR-containing complex in vitro. Expression of ASCO-RNA in Arabidopsis affects the splicing patterns of several NSR-regulated mRNA targets. Hence, lncRNA can hijack nuclear AS regulators to modulate AS patterns during development.


Journal of Experimental Botany | 2014

The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection

Philippe Laporte; Agnes Lepage; Joëlle Fournier; Olivier Catrice; Sandra Moreau; Marie-Françoise Jardinaud; Jeong-Hwan Mun; Estíbaliz Larrainzar; Douglas R. Cook; Pascal Gamas; Andreas Niebel

Symbiosis between legume plants and soil rhizobia culminates in the formation of a novel root organ, the ‘nodule’, containing bacteria differentiated as facultative nitrogen-fixing organelles. MtNF-YA1 is a Medicago truncatula CCAAT box-binding transcription factor (TF), formerly called HAP2-1, highly expressed in mature nodules and required for nodule meristem function and persistence. Here a role for MtNF-YA1 during early nodule development is demonstrated. Detailed expression analysis based on RNA sequencing, quantitiative real-time PCR (qRT-PCR), as well as promoter–β-glucuronidase (GUS) fusions reveal that MtNF-YA1 is first induced at the onset of symbiotic development during preparation for, and initiation and progression of, symbiotic infection. Moreover, using a new knock-out mutant, Mtnf-ya1-1, it is shown that MtNF-YA1 controls infection thread (IT) progression from initial root infection through colonization of nodule tissues. Extensive confocal and electronic microscopic observations suggest that the bulbous and erratic IT growth phenotypes observed in Mtnf-ya1-1 could be a consequence of the fact that walls of ITs in this mutant are thinner and less coherent than in the wild type. It is proposed that MtNF-YA1 controls rhizobial infection progression by regulating the formation and the wall of ITs.


Plant Journal | 2010

A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis.

Philippe Laporte; Béatrice Satiat-Jeunemaitre; Isabel Velasco; Tibor Csorba; Willem Van de Velde; Anna Campalans; Joszef Burgyan; Miguel Arevalo-Rodriguez; Martin Crespi

Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen-fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so-called nodulin genes are induced, including large families that encode small peptides. Using a three-hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA-binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single-stranded RNA-binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA-binding peptides.


Advances in Botanical Research | 2007

How the Environment Regulates Root Architecture in Dicots

Mariana Jovanovic; Valerie Lefebvre; Philippe Laporte; Silvina Gonzalez-Rizzo; Christine Lelandais-Brière; Florian Frugier; Caroline Hartmann; Martin Crespi

Abstract The efficient acquisition of soil resources (nutrients and water) through the root system is crucial for crop productivity. In order to adapt root growth to the soil environment, plants can optimize their root architecture by initiating primordia and influencing growth of primary roots or lateral roots (LRs). Root architecture results from the integration of genetic programs governing root growth patterns and environmental factors which affect signaling pathways. We review here recent knowledge acquired mainly in Arabidopsis thaliana on primary root and LR development and the impact that different environmental constraints (water, phosphate, nitrate, and sulfate) have on root growth and development. Since Arabidopsis is unable to develop specific organogenesis resulting from symbiotic interactions, we also discuss recent molecular data on the analysis of the nitrogen‐fixing symbiotic nodules and their influence on root architecture in legumes. Finally, molecular analysis of the role of noncoding RNAs in environmentally activated signaling pathways will be discussed. These RNAs are emerging as crucial regulators of differentiation and adaptation to environmental conditions.


Monthly Notices of the Royal Astronomical Society | 2016

Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

Alastair Basden; David Atkinson; Nazim Ali Bharmal; Urban Bitenc; M. Brangier; T. Buey; T. Butterley; Diego Cano; Fanny Chemla; Paul J. Clark; M. Cohen; Jean-Marc Conan; F. J. de Cos; Colin Dickson; N. A. Dipper; Colin N. Dunlop; Philippe Feautrier; T. Fusco; J.-L. Gach; Eric Gendron; Deli Geng; Stephen J. Goodsell; Damien Gratadour; Alan H. Greenaway; Andrés Guesalaga; C. D. Guzman; David H. Henry; Daniel Hölck; Z. Hubert; Jean-Michel Huet

Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.


Remote Sensing | 2004

FALCON: a new-generation spectrograph with adaptive optics for the ESO VLT

Francois Assemat; F. Hammer; Eric Gendron; Frédéric Sayède; Philippe Laporte; M. Puech; Jean-Marc Conan; Thierry Fusco; Arnaud Liotard; Frederic Zamkotskian

We present FALCON, a concept of new generation multi-objects integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.15 - 0.25 arcsec) and high spectral resolution (R≥5000) in the 0.8-1.8 μm wavelength range across the Nasmyth field (25 arcmin). Instead of compensating the whole field, the correction will be performed locally on each scientific object. This implies to use small miniaturized devices for adaptive optics correction and wavefront sensing. The main scientific objective of FALCON will be extragalactic astronomy. It will therefore have to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch. We show in this paper that applying adaptive optics correction will provide an important increase in signal to noise ratio, especially for distant galaxies at high redshift.

Collaboration


Dive into the Philippe Laporte's collaboration.

Top Co-Authors

Avatar

Eric Gendron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fanny Chemla

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Michel Huet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gerard Rousset

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Laurent Dournaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascal Jagourel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Puech

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Gilles Fasola

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge