Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoqing Pan is active.

Publication


Featured researches published by Xiaoqing Pan.


Nature Communications | 2015

Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals

Masao Nagasaki; Jun Yasuda; Fumiki Katsuoka; Naoki Nariai; Kaname Kojima; Yosuke Kawai; Yumi Yamaguchi-Kabata; Junji Yokozawa; Inaho Danjoh; Sakae Saito; Yukuto Sato; Takahiro Mimori; Kaoru Tsuda; Rumiko Saito; Xiaoqing Pan; Satoshi Nishikawa; Shin Ito; Yoko Kuroki; Osamu Tanabe; Nobuo Fuse; Shinichi Kuriyama; Hideyasu Kiyomoto; Atsushi Hozawa; Naoko Minegishi; James Douglas Engel; Kengo Kinoshita; Shigeo Kure; Nobuo Yaegashi; Akito Tsuboi; Fuji Nagami

The Tohoku Medical Megabank Organization reports the whole-genome sequences of 1,070 healthy Japanese individuals and construction of a Japanese population reference panel (1KJPN). Here we identify through this high-coverage sequencing (32.4 × on average), 21.2 million, including 12 million novel, single-nucleotide variants (SNVs) at an estimated false discovery rate of <1.0%. This detailed analysis detected signatures for purifying selection on regulatory elements as well as coding regions. We also catalogue structural variants, including 3.4 million insertions and deletions, and 25,923 genic copy-number variants. The 1KJPN was effective for imputing genotypes of the Japanese population genome wide. These data demonstrate the value of high-coverage sequencing for constructing population-specific variant panels, which covers 99.0% SNVs of minor allele frequency ≥0.1%, and its value for identifying causal rare variants of complex human disease phenotypes in genetic association studies.


Journal of The American Society of Nephrology | 2013

Plasticity of Renal Erythropoietin-Producing Cells Governs Fibrosis

Tomokazu Souma; Shun Yamazaki; Takashi Moriguchi; Norio Suzuki; Ikuo Hirano; Xiaoqing Pan; Naoko Minegishi; Michiaki Abe; Hideyasu Kiyomoto; Sadayoshi Ito; Masayuki Yamamoto

CKD progresses with fibrosis and erythropoietin (Epo)-dependent anemia, leading to increased cardiovascular complications, but the mechanisms linking Epo-dependent anemia and fibrosis remain unclear. Here, we show that the cellular phenotype of renal Epo-producing cells (REPs) alternates between a physiologic Epo-producing state and a pathologic fibrogenic state in response to microenvironmental signals. In a novel mouse model, unilateral ureteral obstruction-induced inflammatory milieu activated NFκB and Smad signaling pathways in REPs, rapidly repressed the Epo-producing potential of REPs, and led to myofibroblast transformation of these cells. Moreover, we developed a unique Cre-based cell-fate tracing method that marked current and/or previous Epo-producing cells and revealed that the majority of myofibroblasts are derived from REPs. Genetic induction of NFκB activity selectively in REPs resulted in myofibroblastic transformation, indicating that NFκB signaling elicits a phenotypic switch. Reversing the unilateral ureteral obstruction-induced inflammatory microenvironment restored the Epo-producing potential and the physiologic phenotype of REPs. This phenotypic reversion was accelerated by anti-inflammatory therapy. These findings demonstrate that REPs possess cellular plasticity, and suggest that the phenotypic transition of REPs to myofibroblasts, modulated by inflammatory molecules, underlies the connection between anemia and renal fibrosis in CKD.


Molecular and Cellular Biology | 2004

Leukemogenesis Caused by Incapacitated GATA-1 Function

Ritsuko Shimizu; Takashi Kuroha; Osamu Ohneda; Xiaoqing Pan; Kinuko Ohneda; Satoru Takahashi; Sjaak Philipsen; Masayuki Yamamoto

ABSTRACT GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types of acute leukemia, an early-onset c-Kit-positive nonlymphoid leukemia and a late-onset B-lymphocytic leukemia. Since GATA-1 is an X chromosome gene, two types of hematopoietic cells reside within heterozygous GATA-1 knockdown mice, bearing either an active wild-type GATA-1 allele or an active mutant GATA-1.05 allele. In the hematopoietic progenitors with the latter allele, low-level GATA-1 expression is sufficient to support survival and proliferation but not differentiation, leading to the accumulation of progenitors that are easily targeted by oncogenic stimuli. Since such leukemia has not been observed in GATA-1-null/X mutant mice, we conclude that the residual GATA-1 activity in the knockdown mice contributes to the development of the malignancy. This de novo model recapitulates the acute crisis found in preleukemic conditions in humans.


Blood | 2010

NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation

Hozumi Motohashi; Momoko Kimura; Rie Fujita; Ai Inoue; Xiaoqing Pan; Mariko Takayama; Fumiki Katsuoka; Hiroyuki Aburatani; Emery H. Bresnick; Masayuki Yamamoto

In megakaryocytes, the maturation process and oxidative stress response appear to be closely related. It has been suggested that increased oxygen tension and reactive oxygen species (ROS) promote megakaryopoiesis and that the expression of stress-responsive genes responsible for ROS elimination declines during megakaryocytic maturation. NF-E2 p45 is an essential regulator of megakaryopoiesis, whereas Nrf2 is a key activator of stress-responsive genes. Because p45 and Nrf2 have similar DNA-binding specificities, we hypothesized that p45 competes with Nrf2 to repress stress-responsive genes and achieves favorable intracellular conditions to allow ROS to be efficiently used as signaling molecules. We conducted comprehensive gene expression profiling with wild-type and p45-null megakaryocytes and examined the functional relationship between p45 and Nrf2. We found that 2 characteristic gene clusters are defined within p45 target genes: platelet genes and cytoprotective genes. The former are unique targets activated by p45, whereas the latter are common targets of p45 and Nrf2. Further analysis suggested that, as a less efficacious activator, p45 maintains moderate expression of cytoprotective genes through competing with Nrf2 and promotes ROS accumulation. Increased ROS enhanced platelet gene expression. These results suggest that p45 dominates over Nrf2 to enhance megakaryocytic maturation by promoting ROS accumulation.


Journal of Immunology | 2005

Constitutively Active Aryl Hydrocarbon Receptor Expressed Specifically in T-Lineage Cells Causes Thymus Involution and Suppresses the Immunization-Induced Increase in Splenocytes

Keiko Nohara; Xiaoqing Pan; Shin-ichi Tsukumo; Azumi Hida; Tomohiro Ito; Haruko Nagai; Kaoru Inouye; Hozumi Motohashi; Masayuki Yamamoto; Yoshiaki Fujii-Kuriyama; Chiharu Tohyama

The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix-PER-ARNT-SIM superfamily. Xenobiotics, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, bind the receptor and trigger diverse biological reactions. Thymocyte development and T cell-dependent immune reactions are sensitive targets of AhR-dependent 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity. However, the exact role of the AhR in T cells in animals exposed to exogenous ligands has not been clarified because indirect effects of activated AhR in other cell types cannot be excluded. In this study, we generated transgenic (Tg) mice expressing a constitutively active mutant of AhR under the regulation of a T cell-specific CD2 promoter to examine AhR function in T cells. The mRNAs of the constitutively active mutant of AhR and an AhR-induced gene, CYP1A1, were expressed in the thymus and spleen of the Tg mice. The transgene expression was clearly detected in the thymocytes, CD4, and CD8 T cells, but not in the B cells or thymus stromal cells. These Tg mice had a decreased number of thymocytes and an increased percentage of CD8 single-positive thymocytes, but their splenocytes were much less affected. By contrast, the increase in number of T cells and B cells taking place in the spleen after immunization was significantly suppressed in the Tg mice. These results clearly show that AhR activation in the T-lineage cells is directly involved in thymocyte loss and skewed differentiation. They also indicate that AhR activation in T cells and not in B cells suppresses the immunization-induced increase in both T cells and B cells.


PLOS ONE | 2011

Isolation and Characterization of Renal Erythropoietin-Producing Cells from Genetically Produced Anemia Mice

Xiaoqing Pan; Norio Suzuki; Ikuo Hirano; Shun Yamazaki; Naoko Minegishi; Masayuki Yamamoto

Understanding the nature of renal erythropoietin-producing cells (REPs) remains a central challenge for elucidating the mechanisms involved in hypoxia and/or anemia-induced erythropoietin (Epo) production in adult mammals. Previous studies have shown that REPs are renal peritubular cells, but further details are lacking. Here, we describe an approach to isolate and characterize REPs. We bred mice bearing an Epo gene allele to which green fluorescent protein (GFP) reporter cDNA was knocked-in (EpoGFP) with mice bearing an Epo gene allele lacking the 3′ enhancer (EpoΔ3′E). Mice harboring the mutant EpoGFP/Δ3′E gene exhibited anemia (average Hematocrit 18% at 4 to 6 days after birth), and this perinatal anemia enabled us to identify and purify REPs based on GFP expression from the kidney. Light and confocal microscopy revealed that GFP immunostaining was confined to fibroblastic cells that reside in the peritubular interstitial space, confirming our previous observation in Epo-GFP transgenic reporter assays. Flow cytometry analyses revealed that the GFP fraction constitutes approximately 0.2% of the whole kidney cells and 63% of GFP-positive cells co-express CD73 (a marker for cortical fibroblasts and Epo-expressing cells in the kidney). Quantitative RT-PCR analyses confirmed that Epo expression was increased by approximately 100-fold in the purified population of REPs compared with that of the unsorted cells or CD73-positive fraction. Gene expression analyses showed enrichment of Hif2α and Hif3α mRNA in the purified population of REPs. The genetic approach described here provides a means to isolate a pure population of REPs, allowing the analysis of gene expression of a defined population of cells essential for Epo production in the kidney. This has provided evidence that positive regulation by HIF2α and negative regulation by HIF3α might be necessary for correct renal Epo induction. (282 words)


Molecular and Cellular Biology | 2011

Specific Contribution of the Erythropoietin Gene 3′ Enhancer to Hepatic Erythropoiesis after Late Embryonic Stages

Norio Suzuki; Naoshi Obara; Xiaoqing Pan; Miho Watanabe; Kou-ichi Jishage; Naoko Minegishi; Masayuki Yamamoto

ABSTRACT Erythropoietin (Epo) is secreted from the liver and kidney, where Epo production is strictly regulated at the transcriptional level in a hypoxia- and/or anemia-inducible manner. Here, we examined the in vivo function of the enhancer located 3′ to the Epo gene (EpoE-3′). Reporter transgenic-mouse analyses revealed that the EpoE-3′ enhancer is necessary and sufficient for the liver-specific and hypoxia-responsive expression of the gene after embryonic day 14.5 (E14.5). However, the enhancer is dispensable for Epo gene expression in the kidney and early-stage embryonic liver. Genetic removal of EpoE-3′ from the endogenous Epo gene resulted in mice with severe anemia at late embryonic and neonatal stages due to defects in hepatic erythropoiesis, but early hepatic and splenic erythropoiesis was not affected. The mutant mice recover from the anemia in the juvenile period when major Epo production switches from the liver to the kidney. These results demonstrate that EpoE-3′ is necessary for late hepatic erythropoiesis by specifically supporting paracrine production of Epo in the liver. In contrast, Epo production in the kidney utilizes distinct regulatory machinery and supports erythropoiesis in the bone marrow and spleen in adult animals.


Genes to Cells | 2013

GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation

Mikiko Suzuki; Maki Kobayashi-Osaki; Shuichi Tsutsumi; Xiaoqing Pan; Shin'ya Ohmori; Jun Takai; Takashi Moriguchi; Osamu Ohneda; Kinuko Ohneda; Ritsuko Shimizu; Yasuharu Kanki; Tatsuhiko Kodama; Hiroyuki Aburatani; Masayuki Yamamoto

Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the ‘GATA factor switching’. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1‐knockdown embryos that concomitantly express Gata2‐GFP reporter, high‐level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1‐binding sites widely overlap with the sites pre‐occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient‐phase genes.


Nature Communications | 2013

A mouse model of adult-onset anaemia due to erythropoietin deficiency

Shun Yamazaki; Tomokazu Souma; Ikuo Hirano; Xiaoqing Pan; Naoko Minegishi; Norio Suzuki; Masayuki Yamamoto

Erythropoietin regulates erythropoiesis in a hypoxia-inducible manner. Here we generate inherited super-anaemic mice (ISAM) as a mouse model of adult-onset anaemia caused by erythropoietin deficiency. ISAM express erythropoietin in the liver but lack erythropoietin production in the kidney. Around weaning age, when the major erythropoietin-producing organ switches from the liver to the kidney, ISAM develop anaemia due to erythropoietin deficiency, which is curable by administration of recombinant erythropoietin. In ISAM severe chronic anaemia enhances transgenic green fluorescent protein and Cre expression driven by the complete erythropoietin-gene regulatory regions, which facilitates efficient labelling of renal erythropoietin-producing cells. We show that the majority of cortical and outer medullary fibroblasts have the innate potential to produce erythropoietin, and also reveal a new set of erythropoietin target genes. ISAM are a useful tool for the evaluation of erythropoiesis-stimulating agents and to trace the dynamics of erythropoietin-producing cells.


Molecular and Cellular Biology | 2015

Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes

Yutaka Tojo; Hiroki Sekine; Ikuo Hirano; Xiaoqing Pan; Tomokazu Souma; Tadayuki Tsujita; Shin-ichi Kawaguchi; Norihiko Takeda; Kotaro Takeda; Guo-Hua Fong; Takashi Dan; Masakazu Ichinose; Toshio Miyata; Masayuki Yamamoto; Norio Suzuki

ABSTRACT Erythropoietin (Epo) is produced in the kidney and liver in a hypoxia-inducible manner via the activation of hypoxia-inducible transcription factors (HIFs) to maintain oxygen homeostasis. Accelerating Epo production in hepatocytes is one plausible therapeutic strategy for treating anemia caused by kidney diseases. To elucidate the regulatory mechanisms of hepatic Epo production, we analyzed mouse lines harboring liver-specific deletions of genes encoding HIF-prolyl-hydroxylase isoforms (PHD1, PHD2, and PHD3) that mediate the inactivation of HIF1α and HIF2α under normal oxygen conditions. The loss of all PHD isoforms results in both polycythemia, which is caused by Epo overproduction, and fatty livers. We found that deleting any combination of two PHD isoforms induces polycythemia without steatosis complications, whereas the deletion of a single isoform induces no apparent phenotype. Polycythemia is prevented by the loss of either HIF2α or the hepatocyte-specific Epo gene enhancer (EpoHE). Chromatin analyses show that the histones around EpoHE dissociate from the nucleosome structure after HIF2α activation. HIF2α also induces the expression of HIF3α, which is involved in the attenuation of Epo production. These results demonstrate that the total amount of PHD activity is more important than the specific function of each isoform for hepatic Epo expression regulated by a PHD-HIF2α-EpoHE cascade in vivo.

Collaboration


Dive into the Xiaoqing Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaoru Inouye

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Keiko Nohara

National Institute for Environmental Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge